
An Overview of

Unicode	
including	

ASCII and UTF-8	
 	

Harry H. Porter III	

HHPorter3@gmail.com	

9 February 2022 	

Abstract	

• Unicode is introduced and explained.	
• The ASCII character set is listed.	
• The UTF-8 encoding is introduced and explained.	

	 Available Online: Blitz64.org/Documentation/Unicode-Overview.pdf

mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx
http://Blitz64.org/Documentation/Unicode-Overview.pdf

Table of Contents	
Chapter 1: ASCII	 	3
The ASCII Character Set	 	3

Chapter 2: Unicode	 	6
The Unicode Character Set	 	6
Complications and Details	 	7

Chapter 3: UTF-8	 	11
Character Encoding	 	11
The UTF-8 Encoding	 	12
UTF-8 Encoding Examples	 	14
UTF-8 and ASCII Text Files	 	15
UTF-8 Error Conditions	 	17

Appendix 1: About this Document	 	20
Document Revision History / Permission to Copy	 20

Unicode, ASCII, and UTF-8 / Porter	 Page of 2 20

Chapter 1: ASCII	

The ASCII Character Set	

The ASCII character set is older and simpler than Unicode, so we describe ASCII first. 	

The ASCII character code is a 7 bit code, in which each code number is assigned to a
single character. There are 128 different ASCII codes, over the range:	

	 decimal	 hex	 binary	
	 0	 00 0000 0000	
	 1	 01 0000 0001

… … …
	 127	 7F 0111 1111

ASCII characters are stored with exactly one character per byte.	

Since ASCII is a 7 bit code, the most significant bit of the byte is always 0. In other
words, the following byte values are not used in ASCII. This will become important
when we discuss UTF-8, which uses these values:	

	 decimal	 hex	 binary	
	 128	 80 1000 0000	
	 129	 81 1000 0001

… … …
	 255	 FF 1111 1111

The table on the following page lists the ASCII character set, giving the character
corresponding to each numerical code.	

Unicode, ASCII, and UTF-8 / Porter	 Page of 3 20

Chapter 1: ASCII	

Most codes correspond to “printable” characters but ASCII also contains some
“control characters”.	

	 Number of printable characters	 84	
	 Number of control characters	 34	
	 Total	 128	

Most of the control characters have only historical significance. They are not widely
used and the full table below simply includes them with no description. The more
common control characters which you may encounter are:	

 Decimal	 Hex	 Description 	
 0 00 NUL /0 Null
 7 07 BEL /a Bell/Alert
 8 08 BS /b Backspace
 9 09 HT /t Tab
 10 0A LF /n Linefeed/Newline
 13 0D CR /r Enter/Return
 27 1B ESC /e Escape
127 7F DEL /d Delete

Note that all the control characters are grouped at the beginning (in the range 0x00
… 0x1F) except for the “delete” character (0x7F) which occurs in the last place.	

In the past, ASCII keyboards were not perfectly standardized.	

For example, the backspace key on the keyboard may be labeled with “DELETE” or a
left arrow or something else; hitting this key may result in the “backspace” BS
character (0x08) or the “delete” character (0x7F) or something else being sent to
software. Likewise, hitting the key labelled “RETURN” or “ENTER” may result in LF
(0x0A) or CR (0x0D) being sent to the software. The Unix/Linux system was able to
deal with the variety of keyboards, but at a cost of significant programming
complexity.	

Modern keyboards are more complex and have much greater flexibility, allowing
multi-key combinations, non ASCII characters, etc.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	4 20

Chapter 1: ASCII	

dec	 hex	 dec	 hex	 dec	 hex	

 0 00 NUL \0 Null
 1 01 SOH
 2 02 STX
 3 03 ETX
 4 04 EOT
 5 05 ENQ
 6 06 ACK
 7 07 BEL \a Bell, alert
 8 08 BS \b Backspace
 9 09 HT \t Tab
10 0A LF \n Linefeed/Newline	
11 0B VT
12 0C FF
13 0D CR \r Enter/Return
14 0E SO
15 0F SI
16 10 DLE
17 11 DC1
18 12 DC2
19 13 DC3
20 14 DC4
21 15 NAK
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC \e Escape
28 1C FS
29 1D GS
30 1E RS
31 1F US
32 20 <space>
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 '
40 28 (
41 29)

42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T

85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E ^
95 5F _
96 60 `
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C l
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 y
122 7A z
123 7B {
124 7C |
125 7D }
126 7E ~
127 7F DEL \d Delete  

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	5 20

Chapter 2: Unicode	

The Unicode Character Set	

Throughout the world, there are many characters in use in different languages. The
Unicode system is an attempt to capture all the world’s characters so they can be
represented in computer memory and presented graphically on screens for people
to see and read.	

The Unicode character set is defined, enumerated, and maintained by a committee.
New characters are being added periodically. As of 2020, Unicode version 13.0
contains 143,859 characters. The Unicode character set also includes mathematic
symbols and emoji.	

Each character is assigned	

	 • A number (called a “codepoint”)	
	 • A glyph (the image)	
	 • A name	
	 • A category	

For example:	

	 • Codepoint: 8,713 (= 0x2209)	
	 • Glyph: ∉	
	 • Name: “NOT AN ELEMENT OF”	
	 • Category: Math Symbol	

The number of Unicode characters is limited to a maximum of 1,114,112 characters.
Roughly 12% of the available “codepoints” have been assigned, so there are plenty
of unassigned codepoints.	

Unicode, ASCII, and UTF-8 / Porter	 Page of 6 20

Chapter 2: Unicode	

The maximum number of characters is:	

	 decimal	 hex	
	 1,114,112	 0x11,0000	

The codepoints are numbered:	

	 	 decimal	 hex	
	 min	 0	 0x00,0000	
	 max	 1,114,111	 0x10,FFFF	

An important fact about Unicode and ASCII is:	

The entire ASCII character set (printable characters and control
characters) is included directly into Unicode. The Unicode codepoint for
each character is exactly the same as the ASCII encoding. Thus, ASCII is a
proper subset of Unicode.	

Complications and Details	

Unicode is more complicated than described in this document. Here, we’ll just
mention a few of the complexities.	

Planes	

The Unicode system groups characters into “planes”. The “Basic Multilingual
Plane” (BMP), includes the first 65,536 codepoints (0x0000 … 0xFFFF). This plane
includes almost every character you’ll want to use. In total, there are 17 planes, each
of which contains 65,536 codepoints. Most are yet to be filled in.	

Each codepoint has a “major category” and a “minor category”. For example “∉” has
major category “Symbol” and minor category “Math”. The character “A” which is
called “LATIN CAPITAL LETTER A”, has a major category of “Latin” and a minor
category of “Upper”.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	7 20

Chapter 2: Unicode	

Accent Marks	

Unicode includes support for accent characters. In some cases, there is a character
with the accent included (as for example, é). But, for characters without such
variants, there are special “accent characters”, which are intended to apply to the
previous character. So, a single “e” would be followed by the accent character.	

For example, the following three things are distinct “characters”:	

 Decimal	 Hex	 Character	 Official Unicode Name 	
 101 0065 e LATIN SMALL LETTER E	
 180 00B4 ´ ACUTE ACCENT	
 233 00E9 é LATIN SMALL LETTER E WITH ACUTE	

Characters that Look Very Similar	

There are a number of characters which may look identical but which are completely
different. Below is an example. These character all look identical in “font1", but look
different in font2, as I hope you can see.	

 Decimal	 Hex	 Font1	 Font2	 Official Unicode Name 	
 72 48 H H LATIN CAPITAL LETTER H	
 919 0397 Η Η GREEK CAPITAL LETTER ETA
1053 041D Н Н CYRILLIC CAPITAL LETTER EN

Thus, there are multiple ways to encode what is (in some sense) the same character.
In some contexts, this presents a security risk, since the user may be spoofed into
believing that one identifier is something is not. Programmers beware: equality is
not straightforward.	

Right-to-Left vs. Left-to-Right	

Unicode includes support for languages that are written right-to-left, as well as left-
to-right.	

Unicode includes support for how and where lines are broken, this is, where
newlines are automatically insert into text which spans multiple lines.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	8 20

Chapter 2: Unicode	

The Byte-Order-Mark	

Unicode contains something called the “Byte Order Mark” (BOM). The BOM is used
in conjunction with a similar codepoint, which is declared to be illegal and which
must never appear in any Unicode text.	

 Decimal	 Hex	 Description 	
 65,279 FEFF BYTE ORDER MARK	
 65,534 FFFE illegal	

Note that the above two codepoints are identical if you swap the byte order. A
Unicode text may always contain the BOM. Typically the BOM would be the first
character in the text, if it is included at all. The BOM prints as an invisible character.
Unicode describes this invisibility as “ZERO WIDTH NO-BREAK SPACE”.	

The Byte Order Mark (BOM) is useful whenever Endianness is an issue. This
primarily affects UTF-16 (UTF-16 is less widely used than UTF-8 since UTF-8 seems
to be superior.)	

If the software encounters a BOM, then everything is okay. On the other hand, if the
software encounters the illegal codepoint of 0xFFFE, then it can conclude that it has
got the byte order wrong and needs to switch bytes.	

Character Classification	

Characters fall into classes, such as:	

	 letter	
	 number / digit	
	 mathematical symbol	
	 punctuation	
	 upper case / capital	
	 lower case	
	 space	
	 white-space	

With so many different languages and characters, these tests should not be done by
hand, as was possible in the ASCII system. Instead, functions should be used, in
order to encapsulate and hide the details of Unicode. And presumably these

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	9 20

Chapter 2: Unicode	

functions will need to be updated and modified, as Unicode evolves and new
versions are released.	

Alphabetization and Ordering	

It is often required to alphabetize words. In English, this is straightforward for
anyone who has learned the alphabet. The key operation needed to sort a list is
being able to compute a < relationship between two strings. When the strings are
Unicode texts — and may contain characters from many languages — any definition
of “alphabetic order” is more complex. 	

The Replacement Character	

One unusual character is the “replacement character”, shown below. This character
glyph (i.e., this graphic image) is supposed to be substituted by fonts that do not
contain a character. So when the software encounters a codepoint which is defined
by Unicode but which is not present in the font, the “replacement character” is to be
used.	

 Decimal	 Hex	 Glyph 	 Official Unicode Name 	1

 65533 FFFD	 	 REPLACEMENT CHARACTER	

If you see the image of the replacement character in printed text, it indicates that
some other character is present but the software is incapable of rendering that
character.	

 The software I am using to create this document — Apple’s “Pages” — treats the replacement character 1

differently from other characters and refuses to display it. Thus, I was forced to include an image of the
glyph.

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	10 20

Chapter 3: UTF-8	

Character Encoding	

There are several ways to encode a Unicode character or string of Unicode
characters.	

The UTF-32 encoding simply uses a word (= 4 bytes = 32 bits) to encode each
codepoint. This encoding is good for encoding individual characters, but is very
wasteful for long strings. Thus, UTF-32 is not widely used for Unicode strings.	

The UTF-8 encoding is widely used and will be discussed in detail the following
section.	

The UTF-16 encoding is not as widely used and will not be discussed here.	

Another encoding is meant to be human readable. For example the “∉” character is
encoded as:	

	 U+2209	

The prefix “U+” is followed by hex characters giving the numerical codepoint.
Generally speaking, there will be exactly 4 hex characters. But since Unicode
contains some codepoints greater than 0xFFFF, 4 hex characters will not always be
enough. There are different approaches to dealing with this. One common approach
is to follow the “U+” prefix by either 4 or 6 hex digits.	

The Python language allows the user to write Unicode characters within strings in
several ways as shown in these examples. (These all produce the same string.)	

" d ∉ {a,b,c} "
" d \u2209 {a,b,c} "
" d \U00002209 {a,b,c} "
" d \N{NOT AN ELEMENT OF} {a,b,c} "

Unicode, ASCII, and UTF-8 / Porter	 Page of 11 20

Chapter 3: UTF-8	

In Python, strings are encoded using UTF-8. Thus, the following will not work:	

" d \x22\x09 {a,b,c} "
" d \x00\x00\x22\x09 {a,b,c} "

The UTF-8 Encoding	

As mentioned above, one approach to encoding Unicode strings is to use 4 bytes per
character, but this is wasteful of space. The UTF-8 encoding scheme is variable
length. Each character is encoded with between 1 and 4 bytes. Common characters
tend to have shorter encodings.	

Since Unicode is limited to 1,114,112 codepoints, the largest code point is:	

	 decimal	 hex	 binary	
	 1,114,111	 10,FFFF 1 0000 1111 1111 1111 1111	

As you can see, at most 21 bits are needed for each codepoint. However, since the
leading bits of many common codepoints are zero, the UTF-8 can use fewer bits for
many codepoints.	

Depending on the value of the codepoint, a different number of bytes is used.	

1 byte is used for codepoints in this range:	

	 decimal	 hex	 binary 	
	 0	 0 000 0000

… … …	
	 127	 7F 111 1111	

2 bytes are used for codepoints in this range:	

	 decimal	 hex	 binary 	
	 128	 80 000 1000 0000	

… … …	
	 2,047	 7FF 111 1111 1111	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	12 20

Chapter 3: UTF-8	

3 bytes are used for codepoints in this range:	

	 decimal	 hex	 binary 	
	 2,048	 800 0000 1000 0000 0000	

… … …	
	 65,535	 FFFF 1111 1111 1111 1111	

4 bytes are used for codepoints in this range:	

	 decimal	 hex	 binary 	
	 65,536	 1,0000 0 0001 0000 0000 0000 0000	

… … …	
	 1,114,111	 10,FFFF 1 0000 1111 1111 1111 1111	

Next, we give the UTF-8 encoding scheme. In the following, xxx…xxx is the binary
form of the codepoint. We can refer to these bits as the “payload”.	

Frankly, I can’t describe UTF-8 more concisely and clearly than the following image,
which is from Wikipedia.	
	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	13 20

Chapter 3: UTF-8	

UTF-8 Encoding Examples	

First, consider the following character:	

 Decimal	 Hex	 Character	 Official Unicode Name 	
 97 61 a LATIN SMALL LETTER A	

Since this codepoint is an ASCII character, it is encoded in one byte, exactly as is:	

	 01100001 Binary encoding	
	 0x61 (in hex)	

Next, consider the following character:	

 Decimal	 Hex	 Character	 Official Unicode Name 	
 233 00E9 é LATIN SMALL LETTER E WITH ACUTE	

Since this codepoint is in the range requiring a two-byte encoding, it is encoded as
follows:	

	 Codepoint U+00E9:	 0 0000 0000 0000 1110 1001
	 Regrouping the bits:	 00011 101001

 Header 	 Extension	 	
	 110----- 10------ 	 Encoding template	
	 00011 101001 	 Payload	
	 11000011 10101001 	 Complete encoding	
	 0xC3 0xA9	 (in hex)	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	14 20

Chapter 3: UTF-8	

Finally, consider this character:	

 Decimal	 Hex	 Character	 Official Unicode Name 	
 2,322 0912 ऒ DEVANAGARI LETTER SHORT O	

Since this codepoint is in the range requiring a three-byte encoding, it is encoded as
follows:	

	 Codepoint U+0912:	 0 0000 0000 1001 0001 0010
	 Regrouping the bits:	 0000 100100 010010

 Header 	 Extension 	 Extension	 	
	 1110---- 10------ 10------	 Encoding template	
	 0000 100100 010010	 Payload	
	 11100000 10100100 10010010 	 Complete encoding	
	 0xE0 0xA4 0x92 	 (in hex)	

UTF-8 and ASCII Text Files	

The UTF-8 encoding has the following important property:	

Any string of characters that contains only ASCII characters and ASCII
control characters is represented identically in UTF-8. A text file
containing only legal ASCII characters is indistinguishable from a UTF-8
file which contains only ASCII characters; there is no difference in the
encodings, if only ASCII characters are present in the strings.	

This means that any software that handles UTF-8 strings can be given an ASCII
encoded string and it will perform correctly.	

Also, any legacy software that expects ASCII encoded strings and that deals with
bytes outside the ASCII range (i.e., 0x80 … 0xFF) by printing these bytes using
escapes (or ignoring them altogether) will work reasonably well if accidentally given
a UTF-8 encoded string. For example, the valid ASCII characters will be printed
correctly, and the non-ASCII character will print using escape codes.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	15 20

Chapter 3: UTF-8	

In particular, control code like \n (newline) and \0 (null) will work exactly the same
in either UTF-8 and ASCII.	

Determining the “string length” of an ASCII string is straightforward and
unambiguous. The number of characters and the number of bytes will always be
identical. With a UTF-8 string, “length” can mean either;	

	 • The number of bytes	
	 • The number of characters.	

Accessing a character using an integer index in an ASCII string is straightforward.
For example:	

	 str[4000]	 Retrieve a character from a string 	

Since a string of ASCII characters is an array of bytes, this operation is fast.	

With a UTF-8 encoded string, locating the a character by index requires a lot of time,
since the string must be scanned character-by-character. (More precisely, the
operation is linear in the magnitude of the index.)	

Modifying a character within an ASCII string is straightforward: a single byte is
replaced with another value. However, with a UTF-8 string we have a problem since
the character being replaced may be a different size than the new character. As a
result, we may have to insert additional bytes or remove existing bytes. As a result,
the length of the string in bytes may change. With long strings, this may require
significant amounts of copying.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	16 20

Chapter 3: UTF-8	

UTF-8 Error Conditions	

Not all byte sequences are legal UTF-8 strings. It is possible that a binary file, when
analyzed as a UTF-8 encoded Unicode string, will contain errors.	

Error 1: Invalid Byte Prefix	

We can view a multi-byte UTF-8 encoded character as consisting of a “header byte”,
followed by 1-3 “extension bytes”.	

All UTF-8 bytes begin in one of the following ways:	

	 0-------	 ASCII character	
	 10------	 Extension byte	
	 110-----	 Header byte	
	 1110----	 Header byte	
	 11110---	 Header byte	
	 	
Any byte that begins as follows is illegal:	

	 11111---	 Illegal bytes	

Error 2: Missing Extension Byte	

The header byte indicates how many extension bytes will follow it.	

	 110-----	 Header byte; followed by 1 extension byte	
	 1110----	 Header byte; followed by 2 extension byte	
	 11110---	 Header byte; followed by 3 extension byte	

If the header byte is not followed by the required number of extension bytes, it is an
error. In other words, if one or more extension bytes is missing, it is an error.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	17 20

Chapter 3: UTF-8	

Error 3: Unexpected Extension Byte	

A related error is having too many extension bytes.	

Extension bytes may only follow header bytes. Each header byte must be followed by
exactly the number of extension bytes expected. An extra extension byte is an error.
Furthermore, any extension byte that appears in isolation is in error.	

Error 4: Wrong Encoding	

The UTF-8 encoding scheme is based on ranges. For example, a codepoint in the
range U+0080 … U+07FF is supposed to be encoded with 2 bytes. For example
U+0321 is supposed to be encoded as:	

	 Codepoint U+0321:	 0000 0011 0010 0001
	 Regrouping the bits:	 01100 100001

 Header 	 Extension 	 	
	 110----- 10------ 	 Encoding template	
	 01100 100001 	 Payload	
	 11001100 10100001 	 Complete encoding	
	 0xCC 0xA1	 (in hex)	

However, if the codepoint is encoded with more bytes than required, it is an error.
The following is an encoding of the same value (U+0321), but this encoding is illegal:	

	 Codepoint U+0321:	 0000 0011 0010 0001
	 Regrouping the bits:	 0000 001100 100001

 Header 	 Extension 	 Extension	 	
	 1110---- 10------ 10------ 	 Encoding template	
	 0000 001100 100001	 Payload	
	 11100000 10001100 10100001 	 Complete encoding	
	 0xE0 0x8C 0xA1	 (in hex)	

It seems reasonable for software to ignore this error and to tolerate any such
incorrectly encoded characters.	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	18 20

Chapter 3: UTF-8	

Error 5: Undefined Codepoint	

The Unicode system can accommodate up to 1,114,111 codepoints. However, as of
this writing, the Unicode standard defines only 143,859 codepoints.	

	 decimal	 hex	 	
	 1,114,111	 10,FFFF 	 Maximum codepoint in the future	
	 143,858	 02,31F2	 Largest defined codepoint to date	
	 344,865	 05,4321	 An undefined codepoint	

An undefined codepoint should never appear in a UTF-8 string. (Note that this
condition implicitly disallows any codepoint greater than 0x10,FFFF.)	

For example, the string containing the character U+054321 would be illegal since it
specifies an undefined character. Here is the UTF-8 encoding for this undefined
codepoint:	

	 Codepoint U+054321:	 0 0101 0100 0011 0010 0001
	 Regrouping the bits:	 001 010100 001100 100001

 Header 	 Extension 	 Extension 	 Extension	 	
	 11110--- 10------ 10------ 10------ 	 Encoding template	
	 001 010100 001100 100001	 Payload	
	 11110001 10010100 10001100 10100001 	 Complete encoding	
	 0xF1 0x94 0x8C 0xA1	 (in hex)	

Unicode, ASCII, and UTF-8 / Porter	 	 Page of 	19 20

Appendix 1: About this Document	

Document Revision History / Permission to Copy	

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name is used. The document history is:	

Date	 Author	
4 October 2020	 Harry H. Porter III <document created>	
9 February 2022	 Harry H. Porter III <minor correction>	

	 	
In the spirit of the open-source and free software movements, the author grants
permission to freely copy and/or modify this document, with the following
requirement:	

You must not alter this section, except to add to the revision history. You
must append your date/name to the revision history.	

Any material lifted should be referenced.

Unicode, ASCII, and UTF-8 / Porter	 Page of 20 20

