
Personal
Statement:	
The Goals of the
Blitz-64 Project	

Harry H. Porter III	
Portland State University	

HHPorter3@gmail.com	

14 December 2023 	

This document describes the goals for the Blitz-64 project. The challenges
confronting computer systems in today’s world are discussed and I ruminate on the
decisions and design process in creating a system to address these issues. A number
of opinions and philosophical musings are also included.	

	 Available Online: Blitz64.org/Documentation/B64-Personal-Statement.pdf

http://Blitz64.org/Documentation/B64-Personal-Statement.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table of Contents	
Design Philosophy	 	3
General Principles and Goals	 	3
The Greater Problem	 	4
Areas of Experimentation	 	7
Software Evolution	 	11

Document Revision	 	14
Document History	 	14
Permission to Copy	 	14

About the Author	 15

Blitz-64: Personal Statement / Porter	 Page of 2 15

Design Philosophy	

I must create a system or be enslaved by another man’s;	
I will not reason and compare: My business is to create.	

— William Blake	

General Principles and Goals	

The primary design criterion of the Blitz-64 project is simplicity. The intent is to
create a complete, fully functional computer system that can be understood quickly
and easily by any skilled programmer. Although the system has evolved over time,
this goal remains number one. Simplicity helps to achieve the other goals.	

The second design criterion is reliability. Once completed and deployed, a
computer system should continue to work correctly. We primarily target software
failures and always make our design choices in favor of eliminating bugs. The goal
should always be complete eradication of bugs and unpredictable behavior.
Repeatability and resistance to software rot is crucial to achieving reliability.	

A third criterion is to increase security and improve resistance to malware. The
Blitz-64 project is specifically targeted at applications that require high-
reliability and malware resistance.	

In moving toward these goals, Blitz-64 places an enormous emphasis on catching
and reporting errors. The tradeoff is always performance versus execution speed. I
believe we should choose slower systems that work correctly over faster systems
that do not. Those who are willing to trade correctness for speed should go
elsewhere; Blitz-64 is not for you.	

Another design criterion for KPL is to create a programming language that facilitates
readability of programs. As a consequence, the syntax emphasizes readability, at
the expense of terseness and ease of typing. Increasing the clarity of code clearly
helps in our goals of simplicity and reliability. Software correctness is critical and a
new language designed explicitly for this objective is part of the project.	

Blitz-64: Personal Statement / Porter	 Page of 3 15

Design Philosophy	

Of course, tradeoffs between reliability and execution efficiency cannot be avoided.
Traditionally, low-level languages like C and C++ made design choices in favor of
efficiency, leaving high-reliability to interpreted languages. Within the class of
systems programming languages, KPL puts greater emphasis on reliability and fault-
tolerance than familiar languages.	

The Greater Problem	

Okay, that was some nice boilerplate. The usual clichés, bland banalities, and trite
bromides.	

The fact is, the sheer complexity of modern software systems terrifies me.	

Nobody can understand a modern computer. The device in your pocket holds
millions of lines of code, some of it written in the 1970s . No single person can 1

understand such complicated artifacts. No one can come close to full
comprehension, even with a Computer Science Ph.D.	

The devices in our pockets have a remarkable amount of functionality, but they have
become black boxes. When something goes wrong with the software, it cannot be
fixed or repaired. Often, we can’t even understand the problem. We no longer
understand the technology that we have become totally dependent on.	

The Blitz-64 project really has this goal:	

I want a computer system that a single individual can fully understand. 	

More specifically, I want a computer system that I, myself, can understand. My goal is
to design and implement such a system alone. Furthermore, my goal is to code all
software from scratch, not relying on preexisting software. Obviously, this is
ambitious.	

We have learned a lot about how computer systems can be designed, about what
works best, and how to do things right. But our existing digital infrastructure
rests on a foundation of work done in the distant past, before we learned many of
the lessons that are now taught to beginning programmers. Your phone is running

 Android has 12 million lines of code. [www.visualcapitalist.com/millions-lines-of-code]1

Blitz-64: Personal Statement / Porter	 	 Page of 	4 15

Design Philosophy	

legacy software which was first designed in the 1970s. While this remarkable
software was modern and hugely innovative when it first appeared, we now know a
lot more.	

Much of the software that our society relies on—the software lying below all the
complex apps we use, as well as the digital infrastructure that our lives depend on—
is simply ancient and, by modern standards, grody.	

The Blitz-64 project includes:	
	 a completely new computer architecture	
	 a completely new programming language	
	 a completely new set of software tools	
	 a completely new operating system kernel	
	 full and complete documentation	

The Blitz-64 project includes a completely new computer architecture. Blitz-64
includes a completely new programming language. Blitz-64 includes a completely
new set of software tools. Blitz-64 includes a completely new operating system
kernel, on which these tools run. Blitz-64 includes a full and complete description
in English documents.	

The ambition of the Blitz-64 project is to create an entire computer system from
scratch. The end product will not use and not include any legacy software. The
Blitz-64 project is a complete re-design and re-write of all system software,
including assembler, linker, compiler, kernel.	

My idea is this:	

If an entire computer system is created by a single person, then the resulting
artifact can be understood in totality by any dedicated professional.	

Complexity will necessarily be contained and limited. Obviously, understanding
an entire computer system is something that will be beyond the capabilities or
desires of most people, but it is clear that it is significantly easier to understand a
complete system than to design and implement that system. So the Blitz-64 system
will, by virtue of being so limited, meet the design constraint for simplicity.	

One can define a “prototype” as any design in which there are known flaws or
inadequacies designed in from the beginning. A prototype is not fully functional and
will fail, but it has value nevertheless. We build prototypes in order to learn.	

Blitz-64: Personal Statement / Porter	 	 Page of 	5 15

Design Philosophy	

For example, Boeing might construct a 1/10 scale prototype aircraft for use in wind
tunnel testing; obviously the prototype is not intended to function as a real plane. I
once built a computer out of relays; obviously this computer was fatally flawed from
the moment I decided to use relays. But these prototypes are useful and we learn a
lot from them.	

Blitz-64 is not intended as a prototype or hobby project.	

Blitz-64 is intended to be fully functional, fully modern computer system to
address a couple of specific needs. The hardware architecture, the KPL language, and
all the tools are intended to be fully functional and usable in the construction of
deployable software systems. Blitz-64 is intended to be industrial-grade, power-
efficient, reliable, and fast.	

Is there any need for a wholly new computer system like Blitz-64?	

First, a complete but non-trivial computer system would be useful as a teaching
aid for Computer Science. In my experience, beginning programmers have a hard
time getting their heads around (say) Linux. Modern systems are just too complex to
grok as a whole. Successful programmers are increasingly nothing but “wizards”,
who learn magic phases and incantations which seem to work, without
understanding why they work. This is beyond sad; it is dangerous.	

Second, the market for fault-tolerant, highly reliable systems is expanding and, I
think, crucial for the future of civilization. On the one hand, we have malware,
hacking attempts, and hostile foreign powers trying to break or corrupt existing
software. On the other hand, we are totally reliant on software for critical
applications, such as airplane avionics, banking infrastructure, medical devices,
nuclear missile launch control, stock trading, power grid maintenance, and
election voting. From space probes to pacemakers to auto braking, we cannot
tolerate a glitches or failure in these systems.	

To make matters more urgent, we are moving into a dangerous political future in
which cyberwar is a possibility. Terms like cyberattack, cyberwar, cyber-terror,
cyber-defense, stockpiled exploits, and military malware have entered
circulation. Benign errors and random failures can be bad, but targeted attacks pose
a much greater threat. In a cyberattack, we might experience the simultaneous
failure of multiple systems coinciding with other physical attacks. Right now,
powerful nations are employing very clever guys who work hard to make existing

Blitz-64: Personal Statement / Porter	 	 Page of 	6 15

Design Philosophy	

software fail, and they do this by finding flaws and weaknesses in those millions of
lines of code that nobody really understands.	

To address this clear and present danger, we need a higher level of reliability and
fault-tolerance across the board. In order to verify and certify that a system will
work reliably, all parts of the system must be fully analyzed in the context in which
the system will be deployed. While much of (say) Linux has been time-tested, it is
clear with a system as complex as Linux, there remain holes and deficiencies. We can
be certain that Linux is not bug free, yet it is widely deployed.	

As time goes on, embedding complex legacy systems that are not truly
understood by their users in safety-critical systems may become increasingly
dangerous.	

The risk of systemic failures in some systems is already intolerable. The risk of
concerted cyberattacks is unimaginable.	

Obviously Blitz-64 will not be fully fault-tolerant and bug free from the get-go, but
we do know that, other things equal, a simpler system will be more reliable and
fault-tolerant than a more complex system.	

Areas of Experimentation	

The boundary between hardware and software is the Instruction Set Architecture
(ISA). There are a several ISAs in widespread use (such as x86-64 and ARM) and
there are others less widely known (such as Mips, RISC-V, AVR, SPARC, and Power).	

The ISA boundary can be compared to the border between two countries.
Generally speaking, a border is inherited from the past and its shape was
determined by historical events. Borders are difficult to change. People on both
sides have gotten used to the border and people resist change. Furthermore, a
change requires agreement between two different populations with different
objectives and different cultures. Agreement between groups with different
mindsets is difficult.	

Things change and borders are often not placed in the most practical places. The
border may reflect the outcome of a forgotten battle. Redrawing a border in a
more reasonable way may involve rivers, watersheds, and contemporary language

Blitz-64: Personal Statement / Porter	 	 Page of 	7 15

Design Philosophy	

groups. Unfortunately, a change may be impossible to achieve, even though changing
the border might result in benefits to both parties.	

The ISA acts as a border or interface between two groups of people: the hardware
engineers on one side and the software programmers on the other. These groups
have different educations and areas of expertise. Hardware engineers know a lot
about hardware, but less about software, while the programmers know a lot about
software, but less about hardware.	

Programmers can make recommendations or requests to the hardware folks for
incremental changes in the ISA, but they don’t suggest sweeping changes to the
ISA. Likewise, the hardware people can make incremental changes in the ISA that
benefit the programmers, but are hesitant to throw out the ISA and propose
something radically different.	

The C language also forms a crucial landscape feature and should be considered
as part of this inflexible border. Apparently, all ISA designers share one maxim:	

The ISA must support existing C language programs.	

Whatever changes are proposed, the ISA must continue to support legacy software
written in C and these programs must run exactly the same as they have been
running. No serious hardware designer would propose a new ISA that was unable to
run C code and execute it with high efficiency. Likewise, no sane programmer would
suggest that a newly proposed ISA not support C and suggest that all the low-level
system software can just be thrown out and rewritten.	

Another constraint that affects some ISAs is that they must continue to execute
existing software. We all know that Intel has succeeded because they attached great
importance to being able to execute legacy machine code.	

Some new architectures will execute code without being recompiled. Some new
architectures will execute legacy code but require all code to be recompiled. And
some new architectures will execute legacy code, but require significant changes to
the compiler and other systems software.	

But no new ISA is rash enough to suggest that the C language itself must be
changed. It’s just too much to ask.	

Blitz-64: Personal Statement / Porter	 	 Page of 	8 15

Design Philosophy	

I love the C language. It was brilliant. C remains my language of choice for many
tasks. 	

Nevertheless, I believe the requirement to support C has become an intolerable
constraint on ISA design and prevents progress. Blitz-64 takes the approach that no
legacy constraints, including C itself, should shape the ISA.	

I am fortunate that I have done a little work on both sides of the border. My
educational and professional background is clearly in software, but I have
maintained an interest in electrical engineering and circuit design. I am lucky to be
able to see the border from both perspectives and crazy enough to suggest
something as radical as completely redrawing this border, abandoning all legacy
baggage and the restraints of compatibility with historical precedent.	

The Blitz-64 design was created in conjunction with creating the KPL language. I
started by asking what I want my programming language to look like, and I worked
backward, asking what I need from the ISA to execute this language.	

The Blitz-64 design grew out of a similar project. The earlier project was called
BLITZ, but is now called Blitz-32, if ever mentioned at all. Blitz-32 included an ISA,
an assembler, emulator and compiler, an earlier version of KPL, and a small OS
kernel written in KPL. I learned a lot from the years spent on that project, and
Blitz-64 is my attempt to employ that wisdom to the fullest.	

Anyone familiar with RISC-V will also note the influences on Blitz-64.	

The Blitz-64 project is also my vehicle for experimenting and demonstrating a
number of design choices that seem promising.	

I will say nothing here about the choice of Big Endian except that I could never have
gotten this to work in Little Endian. I just didn’t have the extra bandwidth required
to constantly mangle hex values.	

I feel that greater runtime error checking is the right way to go, although I
appreciate that there is a penalty. My approach is to assume that we must have the
error checking and then ask how we can best accomplish it, with the least runtime
impact. I came up with things like the CHECKA instruction (for array index
checking), the Null Address Exception (for null pointer uses), the SLA (for shift-left-
arithmetic), and the CHECKB/H/W instructions (for range checking).	

Blitz-64: Personal Statement / Porter	 	 Page of 	9 15

Design Philosophy	

I feel that the plethora of integer types in C is confusing and I feel that the problem
of integer overflow is overlooked far too often. My solution is to fully commit to 64
bit arithmetic and to making certain that every arithmetic operation is checked for
overflow. I don’t trust myself to avoid overflow and have been surprised time and
again that code I thought was correct overflowed. Furthermore, most of these
overflows would not have been caught during debugging. We humans tend to gloss
over big numbers.	

For many applications, 32 bit arithmetic is dangerously limited. The numbers in
programs are often big, risking overflow in almost every arithmetic operation. 64
bits numbers are really a lot bigger and accidental overflow just doesn’t happen as
often.	

The decision to eliminate unsigned integers followed naturally. On reflection, I
could find no good reason to include unsigned numbers, which is really the decision
to exclude all negative numbers. Of course it is impossible to imagine C without
unsigned numbers, but I have not yet encountered any need for them in my KPL
programming. I feel that unsigned numbers cause nothing but problems.	

Over the years, I have spent a lot of time debugging. Debugging generally consists of
looking at a code and trying to figure out what it does. To get programs debugged,
one needs to read and understand a program. From this, I concluded that program
readability should be given more importance that writability.	

Unix and the C language were designed for very slow computers by guys who did not
grow up typing. Today, the computing environment is different: word completion,
cut-and-paste, good typing skills, and slick development tools can be assumed. We
can generate code much faster, but we can’t read code any faster. So KPL
emphasizes readability.	

My earlier experience with grammars and parsing gave me a good appreciation for
LR grammars. Like many programmers, I went through a phase of being seduced by
LR parsing algorithms. But in the end, I came to understand that the syntax of a
programming language is orthogonal to the expressiveness and utility of the
language.	

For KPL, I wanted a simple syntax and a parser that was easy to write and which
could generate reasonable error messages. I came to realize that a simple syntax is
easier for humans to read.	

Blitz-64: Personal Statement / Porter	 	 Page of 	10 15

Design Philosophy	

In the course of simplifying the KPL grammar, I tried to eliminate as much as
possible. For example, the elimination of semicolons and mandatory parentheses
(e.g., in IF and WHILE statements) reduces visual clutter. The decision to use “--”
instead of “//” for comments was made because I feel that it is more effective at
visually setting off comments.	

When I didn’t feel strongly about something, I had no hesitation in using tried-and-
true ideas, such as the operator precedence from C, or the “printf” formatting string
codes.	

Both in the ISA and in KPL I tried to simplify and come up with a clean regular
design.	

Blitz-64 was not designed by a committee. There was no schedule and there were
no deadlines.	

I had the uncommon luxury of working at my own speed, which gave me the
freedom to ponder decisions, when the best option was not obvious. Since there
were no deadlines or milestones to be achieved, I could stop and re-work parts of
the system whenever I felt that I had made a bad decision. I had the freedom to go
back and change things that I didn’t like. In fact, I look at the transition from the
earlier Blitz-32 to the Blitz-64 system as going back to fix problems, although it took
several years of cogitation.	

I do not know how modern ISA or software design teams function, but I suspect my
total freedom from management may not be typical.	

As a result, Blitz-64 is something new, something that is quite unlike other systems.	

Software Evolution	

Blitz-64 proposes to create a wholly new branch in the tree of software. One
motivation for creating derivations is to increase resilience, reliability, and fault-
tolerance by increasing the number of unique alternatives, a sort of redundancy at
the level of software code base.	

Blitz-64: Personal Statement / Porter	 	 Page of 	11 15

Design Philosophy	

When it comes to fault-tolerance, there is clearly a benefit to diversity in any
complex system. With only one implementation, there will always be a single, critical
point of vulnerability.	

For example, consider the recent problems with the Boeing 737-MAX aircraft, in
which a single design problem forced the grounding of all 737-MAX planes. Of
course there have been costs associated with this failure, but because of the large
number of different aircraft models in service, the impact on air traffic as a whole
has been limited and tolerable. Because there are many competing aircraft designs, a
failure in the design of one can be tolerated better than if there were only two or
three different airplane models in service.	

The vast majority of phones and computers rely on a shared software base,
essentially derived from Unix. Imagine if all computers were to be running the
exact same OS software, and there appeared a single malware exploit able to
render that software unusable. It would be catastrophic for civilization. This is not
hyperbole; we have become fully dependent on computers for money, food, power,
communication, transportation. We can’t tolerate serious degradation in any single
one of these life-critical systems, let alone a combination of several.	

The more we rely on a software monoculture, the more we risk that a single failure
or successful attack may have tragic consequences. For increased fault-tolerance,
civilization should explore different hardware implementations and a variety of
software systems. Then, in the event of random faults or malicious attacks, some
systems will be entirely unaffected and some functionality would remain intact.	

There is another benefit to variety and diversity. Computers have effectively
become ecosystems, populated by a huge diversity of interacting software
components. Software is evolving and this evolution is heading in many different
directions. We are foolish not to be creative and try some radically different
approaches now and then. Even if a revolutionary approach like Blitz-64 does not
lead to a revolution, such projects can still have beneficial influences on future
designs.	

We might even suggest that in the complex universe of software, Natural Selection
is beginning to occur, since there is competition and some software entities
(concepts, styles, code snippets, or even entire programs) survive and prosper, while
other software entities are withering and fading into history.	

Blitz-64: Personal Statement / Porter	 	 Page of 	12 15

Design Philosophy	

Do we have the conditions to declare that Darwinian Selection is happening to
software?	

The analogy between the copying of code from older programs into newer programs
and the mixing of genes that occurs in biological reproduction is obvious.
Inherited features are being passed from older entities to newly created entities.
We note that resources are limited and we observe differential survival among
entities. Competition among software entities occurs whenever human users
choose to download and execute one program over another. Furthermore, the
ability to survive, flourish, and inspire new entities is dependent on these
inherited features. Code is copied from successful apps to new apps, just as the
genes of successful organisms are copied during reproduction. The Darwinian
requirement of random mutation is crucial for Natural Selection to occur. Both
ideas and code are copied from one app to another and in both cases, there are
changes and often mistakes. To digress into academic philosophy, I’ll observe that 2

this mutation is not fully random, so we might be observing some hybrid between
Intelligent Design and Darwinian Selection.	

Regardless of such philosophical musings, it’s clear we need to keep creating and
experimenting and not simply re-using existing intellectual property.	

By creating a wholly new branch in the tree of software derivation, Blitz-64 may lead
to the exploration of new areas in software design space, to new avenues in the
creative evolution of software.	

In any case, I hope you find Blitz-64 interesting and worth studying.	

 If you see what I’ve seen some student programmers do to existing code, you’ll agree that some 2

mutations are truly random.

Blitz-64: Personal Statement / Porter	 	 Page of 	13 15

Document Revision	

Document History	

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name is used. The document history is:	

Date	 Author	
28 October 2019	 Harry H. Porter III <document created>	
18 February 2020	 Harry H. Porter III <document reviewed>	
14 December 2023	 Harry H. Porter III <minor updates>	

Permission to Copy	

Please do not copy or modify this document. Any material lifted should be
referenced.	

Blitz-64: Personal Statement / Porter	 Page of 	14 15

About the Author 	
For many years, Professor Harry H. Porter III taught in the Department of Computer
Science at Portland State University. He has produced several video courses, notably
on the Theory of Computation. Recently he built a complete computer using the
relay technology of the 1940s, which has eight general purpose 8 bit registers, a 16
bit program counter, and a complete instruction set, all housed in mahogany
cabinets as shown. His technical focus and research interests have included AI and
neural networks; parsing and natural language processing; logic, object-oriented,
and functional programming; compilers, operating systems, interpreters, and system
software; and discrete math and computational theory. He has programmed in many
high-level languages and written assembly code for a variety of machines, dating
back to the IBM 360/67 and Intel 8080.	

Porter lives in Portland, Oregon. When not trying to figure out how his computer
actually works, he skis, hikes, travels, and spends time with his children building
things.	

Porter holds an Sc.B. from Brown University and a Ph.D. from the Oregon Graduate
Institute.	

Blitz-64: Personal Statement / Porter	 	 Page of 	15 15

