
Blitz-64:
Summary of the

Machine Architecture	

Harry H. Porter III	
Portland State University	

HHPorter3@gmail.com	

14 December 2022	

This document gives an overview of the Instruction Set Architecture (ISA) of the
Blitz-64 processor core.	

	 Available Online: Blitz64.org/Documentation/B64-ISA-Summary.pdf

http://Blitz64.org/Documentation/B64-ISA-Summary.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table of Contents	
The Blitz-64 Architecture	 	3
General Purpose Registers	 	3
Control and Status Registers	 	3
Kernel and User Mode	 	4
Memory and Address Spaces	 	4
Page Tables	 	5
Machine Instructions	 	6
Synthetic Instructions	 	6
Instruction Formats	 	6
Assembly Code	 	7
Natural Data Types	 	8
Support for Legacy Code	 	9
The KPL Language	 	9
Floating Point	 	10
Error-Handling Philosophy	 	10
Exception Handling	 	11
System Call and Return	 	13
Asynchronous Interrupts	 	13
Instruction Categories	 	14

The Blitz-64 Project	 	15
Existing Tools	 	15
Workload and Environmental Expectations	 	16
Simplicity, Reliability, and Usability	 	16
Documentation	 	17
Hardware Core - System Verilog for FPGA	 	17
The xv6 Operating System Kernel	 	17
Open Source	 	17
Ongoing Work	 	18

Document Revision	 	19
Document History	 	19
Permission to Copy	 19

Blitz-64: ISA Summary / Porter	 Page of 2 19

The Blitz-64 Architecture	

General Purpose Registers	

There are 16 registers. Each register is 64 bits (8 bytes) in size. Register r0 is fixed at
zero. All other registers (r1 … r15) are treated equally and identically by the
machine instructions.	

By convention some registers have special functions and are given alternative
names. Registers r1 … r7 are used for argument passing. Register s0 … s2 are as
work registers. Register t is used for temporary results in synthetic instructions.
Register sp is the stack pointer. Register lr is a link register used in function call and
return. Register gp is a global pointer to shared data. Register tp is a thread pointer
for thread-specific data.	

Control and Status Registers	

There are 16 Control and Status Registers (CSRs). Each is 64 bits and each has a
special, dedicated functions. Five CSRs are read-only. A particularly important
register is csr_status, which is often called the “status word”. (See the diagram on
the next page.)	

Among other things, the CSRs are used to enforce the privilege/protection of kernel
code, to control and mask interrupts, and to facilitate fast switching between
processes.	

The CSRs may only be accessed by privileged instructions. That is, they are only
available to code running in Kernel Mode.	

There is only one set of general purpose registers and one set of CSRs; they are not
copied or shadowed.	

Blitz-64: ISA Summary / Porter	 Page of 3 19

Blitz-64: Summary of the Machine Architecture	

	

Kernel and User Mode	

There are two processor modes: Kernel Mode and User Mode. Some instructions
are privileged. Privileged instructions may only be executed when running in
Kernel Mode. All remaining instructions are non-privileged and may be executed
regardless of the current operating mode.	

Memory and Address Spaces	

Memory is byte addressable and Big Endian. Address spaces are identified by a 16
bit Address Space Identifier (ASID). The ASID of the currently executing process is
contained in the csr_pgtable register.	

Blitz-64: ISA Summary / Porter	 	 Page of 	4 19

Blitz-64: Summary of the Machine Architecture	

Program-generated addresses are 36 bits in length, allowing for a 64 GByte address
space.	

Kernel memory and all memory-mapped I/O devices are constrained to reside in the
lower 32 GBytes of the address space. The lower 32 GBytes may only be addressed
by the operating system, i.e., code running in Kernel Mode.	

Application code — code running in User Mode — may only address bytes in the
upper 32 GBytes. The upper 32 GBytes is the virtual address space of a process. Of
course, these addresses will be mapped into physical memory and I/O addresses via
the page table and TLB registers by the Memory Management Unit (MMU).	

Page Tables	

The Blitz-64 page size is 16 KBytes.	

Page tables are only two levels, not three or four as in other systems. This relatively
flat page table fits naturally and makes the entire virtual space accessible.	

With page tables, physical memory up to 16 TBytes is supported, i.e., using 44 bit
physical addresses.	

One advantage of a larger page size and flatter page table is that page faults happen
less frequently and page table lookup time is reduced when compared to three-level
tables and more complex organizations.	

Furthermore, a smaller number of Translation Lookaside Buffer (TLB) registers is
needed to capture a process’s working set. Together, these effects reduce context
switching time. The Address Space ID (ASID) in the status word allows TLB registers
to remain valid and usable across multiple context switches.	

Page Table Entries (PTEs) can be marked valid, executable, writable, copy-on-
write, and dirty. There are several exception types associated with various types of
page fault.	

Blitz-64: ISA Summary / Porter	 	 Page of 	5 19

Blitz-64: Summary of the Machine Architecture	

Machine Instructions	

Machine instructions are 32 bits in size. In addition, the instruction encoding
supports compressed instructions of varying sizes.	

At this time, the compressed instructions have not been defined. After a larger code
body has been created and can be statistically studied, the compressed instruction
set will be defined. In order to define the most profitable encoding, we need to
determine instruction execution frequencies accurately. The danger in defining the
compressed instruction set prematurely is a confirmation bias effect in which the
compiler favors generating compressed instructions because they are compressed.	

Synthetic Instructions	

A number of instructions are synthetic, which means they are not implemented in
hardware. Instead, synthetic instructions are translated by the assembler into
equivalent machine instructions that perform the same function. The distinction
between synthetic and machine instructions is invisible to the programmer and
compiler. Since the machine instruction set is smaller and significantly simpler, the
hardware logic is simplified.	

One value of the synthetic instructions is that the programmer / compiler can use
full sized addresses and data values (i.e., up to 64 bits), while the machine
instructions only allow immediate values that are limited to 16 or 20 bits.	

Each synthetic instruction is usually translated into a single machine instruction,
although occasionally two or more instructions are required if a particularly large
immediate value is involved.	

Instruction Formats	

There are 4 forms for instructions, termed Formats A, B, C, and D. Format A
supports only register operands, with up to 4 registers. Formats B and C instructions
include a 16 bit immediate value and 2 registers. Format D supports a 20 bit
immediate value with only one register. (See the diagram.)	

Blitz-64: ISA Summary / Porter	 	 Page of 	6 19

Blitz-64: Summary of the Machine Architecture	

	

Assembly Code	

The assembly code is typical. For example:	

MyLabel: addi r5,r3,0x123 # Compute r5 = r3 + 0x123

The destination register is always first — on the left — as in the above example.	

Blitz-64: ISA Summary / Porter	 	 Page of 	7 19

Blitz-64: Summary of the Machine Architecture	

Here is another example:	

Loop_3: # REPEAT
 loadd r1,0(r2) # Fetch 8 bytes from memory
 stored 0(r3),r1 # Store the doubleword
 addi r2,r2,8 # Increment pointers
 addi r3,r3,8 # .
 addi r4,r4,-1 # Decrement counter
 bnez r4,Loop_3 # UNTIL counter is 0

Natural Data Types	

Blitz-64 is inherently 64 bit. The primary data type is the 64-bit signed integer and
most of the instructions are designed for them. Instructions to support and convert
between legacy sizes such as 8, 16, and 32 bits are also provided.	

The range of a 64 bit signed number is huge. With 64 bit numbers, there is no need
to perform arithmetic in the other smaller sizes. There is certainly no need for
unsigned numbers, which are error-prone and commit the mathematically dubious
practice of ignoring negative values. Instructions for perform arithmetic / logic
operations on legacy sizes of 8, 16, and 32 bits are not present in Blitz-64.	

To save space in memory, numbers must sometimes be squeezed into smaller
spaces. Blitz-64 includes instructions to support squeezing, either with range
checking or without, as the application requires.	

Data must be aligned in memory with the natural requirements:	

Data Type	 Size	 Alignment Required	
doubleword	 64 bits	 8 bytes	
word	 32 bits	 4 bytes	
halfword	 16 bits	 even addresses	
byte	 8 bits	 <none>	

Blitz-64: ISA Summary / Porter	 	 Page of 	8 19

Blitz-64: Summary of the Machine Architecture	

Support for Legacy Code	

The Blitz-64 system is not intended to support C or C++. While there is nothing that
prevents these languages from being compiled into Blitz-64 assembler, this was not
a design priority.	

Any traditional implementation of the C and C++ programming languages assumes
optimized support for 32 bit arithmetic. However, Blitz-64 is strongly 64 bit, and
the emphasis is shifted away from the smaller data sizes of C and C++, such as int,
int32_t, uint16_t, …	

The KPL Language	

KPL stands for Kernel Programming Language. KPL is the primary systems
programming language for Blitz-64. KPL is used exclusively where C or C++ would
be used in a traditional Unix-based operating system.	

KPL is similar to C / C++ with support for:	

• Classes and object-oriented programming	
• Direct use of pointers and memory manipulation	
• Separate compilation of large programs	
• Linkage with assembly code programs	
• Familiar constructs (IF, WHILE, FOR, …)	
• Familiar printing with printf format strings	

KPL differs from C / C++ in several ways, such as:	

• Try-Throw-Catch mechanism	
• Greater attention to error detection and reporting	
• Simpler syntax	
• Cross-package specification checking	
• Parameterized classes (as opposed to template copying)	
• Range and overrun checking for all arrays	

Blitz-64: ISA Summary / Porter	 	 Page of 	9 19

Blitz-64: Summary of the Machine Architecture	

Floating Point	

Blitz-64 includes floating point instructions.	

There is no separate set of floating point registers. Instead, the general purpose
registers are used. This decision was taken in order to reduce context switch times,
by reducing the size of a process’s state and thus the time required to save that state.	

Only double precision floating point is supported; single precision is not supported.
It is assumed that number-crunching applications will use specialized processors for
floating point computation. But since there is occasionally a need for floating point
computation, double precision is included in the Blitz-64 architecture.	

Some Blitz-64 cores may choose to implement the floating point instructions
directly in hardware. Other implementations may choose not provide hardware
support, in which case the instructions will cause an Emulated Instruction
Exception, and will be implemented in software by trap handlers.	

Error-Handling Philosophy	

Blitz-64 seeks to catch all programming errors and we put an emphasis on
performing as much f checking as possible. We understand that execution speed
and performance are important, but the Blitz-64 position is that error-checking is
neglected in other ISAs.	

This is a significant difference between Blitz-64 and other processor architectures.	

Modern software is growing exponentially in complexity. The proliferation of subtle
bugs is intolerable. Software flaws are difficult to identify and expunge. Blitz-64
adopts a decidedly conservative and cautious approach, adding much more w
checking than competing ISAs. It is hoped that this tradeoff will ultimately make the
software more reliable and fault-tolerant, as well as making the debugging process
faster and more thorough.	

For example, by restricting arithmetic to 64 bit signed numbers, we reduce overflow
possibilities dramatically since most commonly occurring integer values are handled
without issue. And by also checking all arithmetic operations for overflow,
Blitz-64 deals with errors directly, rather than simply ignoring problems and
producing incorrect result values.	

Blitz-64: ISA Summary / Porter	 	 Page of 	10 19

Blitz-64: Summary of the Machine Architecture	

It remains to be seen whether the demand for fault-tolerance is vigorous enough to
support the Blitz-64 philosophy. The Blitz-64 approach targets mission critical
applications — where correctness outweighs speed — over non-critical software,
such as gaming and entertainment.	

Exception Handling	

Blitz-64 defines a number of types of exceptions. Exceptions are caused by an error
arising during the execution of an instruction. Any exception will invoke “exception
handling". There is a single trap hander routine, which will save thread state and
dispatch to the appropriate handler code.	

In some case, such as page faults, the exception handler will repair the problem and
execution will resume where it was interrupted.	

For fatal problems, the exception handler will return to the interrupted process, but
will throw an error in the KPL language. A fault-tolerant application program will
catch and the error and take corrective action. For simpler programs which do not
provide code to catch the error, the exception will immediately invoke debugging.	

The Blitz-64 ISA was designed in such a way that the location at which an exception
occurs is always captured. The system always reports the exact nature of the
error and the exact location at which it occurred, leading to faster and easier
debugging. The error reporting is in source code file and line number form.	

All arithmetic instructions are checked for overflow and any overflow problem
arising during execution will cause an Arithmetic Exception. It is simply
unacceptable to continue any computation silently with incorrect results, and
Blitz-64 strives to avoid this.	

The “load” and “store” instructions access memory and these instructions have
alignment requirements. Normally, all KPL code will meet the requirements, but for
any occasion where the alignment requirement is not met, a Load / Store
Alignment Exception will be signaled. The handler code can be invoked to
complete the operation and Blitz-64 includes several instructions designed to speed
this operation.	

Blitz-64: ISA Summary / Porter	 	 Page of 	11 19

Blitz-64: Summary of the Machine Architecture	

The “null” value is commonly used in pointer operations. As every programmer
knows, a common program mistake is to dereference a null pointer. With Blitz-64,
addresses are always checked in hardware and a Null Address Exception will be
signaled to let the programmer know exactly what has happened and where it
happened.	

Blitz-64 takes a novel approach to the problem of stack overflow by throwing a
Stack Overflow Exception. Traditional approaches using sentinels/canaries or
allocating stacks that are extra large “just in case”, seem inelegant. With Blitz-64, a
Stack Limit value is kept in the status word, so the check is both precise and reliable.	

Any attempt to execute invalid instructions will result in an Invalid Instruction
Exception. Furthermore, any attempt by User Mode code to execute privileged
Kernel Mode instructions will result in this same exception.	

There are several exception types to support debugging, namely the Debug
Exception, the Breakpoint Exception, and the Singlestep Exception.	

Some instructions (typically the floating point instructions) may not be
implemented in a particular core, for example, to save chip real estate or reduce
processor complexity. When such instructions are encountered at runtime, an
Emulated Instruction Exception will be signaled, allowing OS handler code to
emulate the missing operation. The executing program code will be none-the-wiser.	

Certain exceptions must never occur when the processor is executing handler code,
or else infinite regress occurs. Thus, an exception will be promoted to a Kernel
Mode Exception if it occurs within handler code.	

A processor core may perform some internal error checking. When a violation is
detected, a Hardware Fault Exception will be signaled, allowing failsafe procedures
to be initiated.	

A number of exception types are associated with supporting page tables and virtual
address spaces. If a user process tries to access kernel memory, a Page Illegal
Address Exception is signaled. If the page table register is incorrect, a Page Table
Exception is signaled. If a page is missing or invalid, a Page Invalid Exception is
signaled. If a write to a page not marked writable is attempted, a Page Write
Exception is signaled. If an instruction is fetched from a page not marked
executable, a Page Fetch Exception is signaled. If a write to a non-dirty page is

Blitz-64: ISA Summary / Porter	 	 Page of 	12 19

Blitz-64: Summary of the Machine Architecture	

attempted, a Page First Dirty Exception is signaled. If a write to a non-dirty page
marked copy-on-write is attempted, a Page Copy-On-Write Exception is signaled.	

System Call and Return	

The “syscall” instruction is treated as an exception. A jump is made to the trap
handler, which dispatches to the appropriate handler function code. The syscall
instruction contains a 10 bit immediate value, essentially allowing for 1,024 distinct
syscall instructions. So for the 1,024 most common syscalls, the dispatching is
optimized to be particularly fast. The corresponding system call “return” instruction
is designed so that, for short operations not requiring a context-switch, the return is
simple and fast.	

Asynchronous Interrupts	

There are several sources for external interrupts and each is handled in a manner
similar to synchronous exceptions. Interrupts coming from outside the instruction
stream are said to be “asynchronous”, since their timing is unrelated to the
instruction currently in execution. Examples include Timer Interrupts, I/O
Interrupts, DMA Controller Interrupts, and Communication Interrupts from
tightly coupled cores in a multi-processor array.	

Asynchronous interrupts invoke trap handling and exception processing in the same
way as synchronous exceptions caused by error conditions occurring during normal
instruction execution.	

Blitz-64: ISA Summary / Porter	 	 Page of 	13 19

Blitz-64: Summary of the Machine Architecture	

Instruction Categories	

Blitz-64 includes 123 unique machine instructions and 60 synthetic instructions.
These are fully described in the Instruction Set Architecture (ISA) document.	

Roughly speaking, the instructions can be grouped into the following categories:	

• Arithmetic	
• Logic and shifting	
• Sign extension and range checking	
• Byte / Endian reordering	
• Testing (with boolean result)	
• Test and branch	
• Data manipulation for large values	
• Call, return, switch, and method dispatch	
• Memory load and store	
• Support for unaligned load and store	
• System call and return	
• CSR register manipulation	
• TLB register flushing	
• Debug / breakpoint	
• Sleep / shutdown / power control	
• Floating point computations	
• Methodology to accommodate unspecified / non-standard instructions	

Blitz-64: ISA Summary / Porter	 	 Page of 	14 19

The Blitz-64 Project	

Existing Tools	

The following software tools are completed at this time and can be invoked from a
command-line shell:	

• Assembler	
• Linker	
• Library creation tool	
• KPL Compiler	
• Emulator (the Blitz-64 Virtual Machine)	

The assembler is a full-function assembler, with expression evaluation and a number
of assembler directives (i.e., pseudo-ops). Transforming synthetic instructions into
machine code sequences is done by both the assembler and the linker.	

The assignment to memory addresses can affect the translation from synthetic
instructions to machine instructions. Furthermore, the translation from synthetic
instruction to machine instruction can affect the address assignments. The
assembler and linker work together with complex algorithms to find the best
translation.	

The assembler handles the full assembly language. The KPL compiler compiles the
full KPL language. And the virtual machine emulates the full Blitz-64 ISA. In fact, the
virtual machine emulates a multiprocessor with an arbitrary number of cores.	

The KPL compiler is written in C++ and the remaining tools are written in C. Both
the assembler and the compiler have also been ported to KPL.	

Blitz-64: ISA Summary / Porter	 Page of 15 19

Blitz-64: Summary of the Machine Architecture	

Workload and Environmental Expectations	

The following seem to be distinct, non-overlapping market niches:	

	 • Small, embedded systems — such as the AVR chip and Arduino platform	
	 • Systems running Linux/Unix — such as the ARM, x-86, and Risc-V	

The Blitz-64 architecture is targeted at the space between these extremes.	

The core design is targeted at application loads in which each core will typically host
100 to 1000 simultaneous threads, with perhaps 100 virtual address spaces.
Address spaces are expected to range from very small, up to 1 or 2 gigabytes.
Although the maximum virtual address space is 32 GiBytes, we expect applications
larger than a few gigabytes to be broken into multiple cooperating processes, for a
variety of reasons.	

Multiple cores — perhaps on a single chip — are expected to be arrayed in two or
three dimensional arrays. Multiprocessor arrays of smaller, simple cores are
expected to be more widely deployed in the future, in support of complex parallel
applications.	

Blitz-64 is intended to be a cleaner core design which can be implemented with a
smaller silicon footprint. Our thinking is that a smaller core allows more cores to be
placed on a single die, thus increasing the overall computational horsepower within
a single silicon package.	

Simplicity, Reliability, and Usability	

Smaller, simpler designs are more easily understood. For applications requiring high
reliability, a complex computer system presents a challenge to implementation,
testing, verification, and certification. Blitz-64 is intended to be simple enough to be
understood by mortals, yet powerful and functional enough to be deployed
effectively for serious engineering applications. We also feel there is a need for a
system of moderate complexity for educational purposes, and hope that Blitz-64 can
also fill this void.	

Blitz-64: ISA Summary / Porter	 	 Page of 	16 19

Blitz-64: Summary of the Machine Architecture	

Documentation	

Please consult the following for more detail: 	

• Blitz-64: ISA Quick Reference Card (6 pages)	
• Blitz-64: Instruction Set Architecture Reference Manual (340 pages)	
• Blitz-64: Assembler, Linker, and Object File Format (289 pages)	
• An Introduction to KPL: A Kernel Programming Language (207 pages)	
• KPL Syntax (17 pages)	

These, and more, are available online at: Blitz64.org	

Hardware Core - System Verilog for FPGA	

The Blitz-64 processor core has been implemented in System Verilog and is called
“MicroBlitz”. The full ISA is implemented and tested, and the design can be
downloaded to an FPGA and executed. Work is ongoing to add support for
peripherals and documentation. A dedicated Blitz-64 Single Board Computer (SBC)
is envisioned for the future.	

The xv6 Operating System Kernel	

The xv6 kernel is a simple Unix OS, packaged together with a number of user-mode
programs including a command-line shell. xv6 is a multi-core kernel in which user
programs run in virtual memory spaces. xv6 was written in C for the x86 and Risc-V
architectures and is used for teaching.	

We have rewritten the xv6 in KPL and ported it to the Blitz-64 platform. The system
is 100% functional, proving that Blitz-64 can support full operating system kernels.
The xv6 kernel is an excellent jumping-off point for aspiring kernel authors.	

Open Source	

The Blitz-64 design is open and free to use without license. The software is also free
and open.	

Blitz-64: ISA Summary / Porter	 	 Page of 	17 19

http://Blitz64.org

Blitz-64: Summary of the Machine Architecture	

Ongoing Work	

The Blitz-64 project is active and ongoing. Future work includes these themes:	

• Designing and creating the Blitz OS	
• Increasing and improving the documentation	
• Refinement of the System Verilog core	
• Implementation of a Single Board Computer (SBC)	

Blitz-64: ISA Summary / Porter	 	 Page of 	18 19

Document Revision	

Document History	

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name is used. The history of this document is:	

Date	 Author	
20 February 2020	 Harry H. Porter III <document created>	
6 March 2020	 Harry H. Porter III 	
18 October 2022	 Harry H. Porter III	
14 December 2023	 Harry H. Porter III <current version>	

Permission to Copy	

This document may be shared but do not modify this document. Any material lifted
should be referenced.

Blitz-64: ISA Summary / Porter	 Page of 	19 19

