
Blitz-64:	

Emulator
Reference
Manual	

Harry H. Porter III	

HHPorter3@gmail.com	

14 December 2023 	

This document describes the Blitz-64 emulator and how to use it to execute Blitz-64
code.	

	 Available Online: Blitz64.org/Documentation/B64-Emulator.pdf

http://Blitz64.org/Documentation/B64-Emulator.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table of Contents	
Chapter 1: Overview	 	5
Emulators and Virtual Machines	 	5
The Blitz Emulator: An Introduction	 	8

Chapter 2: Example Usage	 	12
Summary	 	12
Compiling and Linking a Program	 	12
Invoking the Emulator	 	14
Debugging: An Example	 	17
Debugging: A Second Example	 	22

Chapter 3: Commands	 	31
Introduction	 	31
The Commands	 	33

q quit 33
h help 33
i info 35
r regs 37
r1, r2, … r15 38
tlb 38
csr 39
pc 40
setmem 41
ld 42
st 44
dm dumpmem 45
dm2 dumpmem2 48
dis 49
d 51
stack 51
stack2 54
sm stackmem 54
globals 55
trans 57
addr 60
addr2 60
read 61
write 61
cores 62
sel 64
<\n> 65

Emulator Reference Manual / Porter	 Page of 2 147

Table of Contents	

sched 65
startall 69
stopall 69
start 70
stop 71
symbols 71
dinfo 72
find 72
find2 74
where 74
g go 75
s step 76
n stepn 77
t 77
watch 81
reset 83
rerun 84
hex 86
dec 86
ascii 86
parms 87
rom 90
serial 97

Chapter 4: Errors and Warnings	 	100
Problems During Emulation	 	100
Fatal Error	 	100
Command Line Errors	 	100
The “-nowarn” Command Line Option	 	101
Execution Errors	 	101
Program Logic Errors	 	103
DIV / REM Implementation Dependencies	 	104
Floating Point Dependencies	 	104
Tight Infinite Loops	 	105

Chapter 5: Miscellaneous Instructions	 	107
The SLEEP1 Instruction	 	107
The SLEEP2 Instruction	 	107
The DEBUG Instruction	 	108
The BREAKPOINT Instruction	 	112
The CONTROL and CONTROLU Instructions	 	113

Software Reference Manual / Porter	 	 Page of 3 147

Table of Contents	

Chapter 6: Memory-Mapped I/O Devices	 	115
Introduction	 	115
The BootROM Area	 	115
The SecureStorage Area	 	116
The SimpleSerial Device	 	117
The HostInterface Device	 	119
Other Devices	 	125

Chapter 7: Porting and Host Issues	 	126
Command Line Options	 	126
Development on Apple macOS	 	127
Host Compatibility: Porting to Windows, Linux	 	129

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	 	133
Quick Summary	 	133
Introduction	 	133
BlitzHEX1 File Format	 	136
BlitzHEX2 File Format	 	138
Hexify	 	140
Input Requirements	 	142
Output Form: System Verilog	 	143
Output Form: HEX File Format	 	144
Output Form: HEX2 File Format	 	145

About This Document	 	146
Document Revision History / Permission to Copy	 	146
Corrections and Errors	 	146

Recent Changes	 147

Software Reference Manual / Porter	 	 Page of 4 147

Chapter 1: Overview	

Emulators and Virtual Machines	

In order to be run, a program must be written and compiled for a particular
computer. However, if you want to execute the program on a different computer
system, there is a problem. The executable program file cannot be run on a computer
other than the one it was originally intended to execute on.	

To run the program on a different computer, we use a virtual machine. A virtual
machine is a piece of software that sits between one computer (the host) and the
application program. It provides the illusion to the application program that it is
running on the computer it was intended for, although it is actually running on a
different computer.	

The computer actually being used is called the “host computer”. The computer that
the application program was compiled for is called the “target computer”.	

There are two different kinds of “virtual machine” software. We use the term
“interpreter” for one type and “emulator” for the other. We should note that people
often use the term “virtual machine” for either or both types. 	1

The distinction depends on whether the target machine is real hardware or not.	

 Emulators were invented first and were called “virtual machines” back in the days of the IBM 1

System/360. Around the time of LISP and the Pascal language, the term “bytecode interpreter” was
used. Early interpreters had a terrible reputation for poor performance. The Java language
extended the term “virtual machine” (somewhat incorrectly) to mean byte code interpreter, in
order, I think, to avoid the connotation of inefficiency and because “virtual" sounded groovy at the
time. As for the inefficiency associated with interpreters, several things have happened. First,
portability has become much more important and worth the loss of performance. Second,
computers have gotten fast enough for people to accept the degradation in speed for many
applications. Third, compiler technology has improved, reducing the performance penalty of
interpreted code.

Emulator Reference Manual / Porter	 Page of 5 147

Chapter 1: Overview	

Emulator	

The idea is that the target computer is a real computer but, for one reason or
another, that hardware is unavailable. The programmer wishes to develop
code for the target computer, running and debugging it, without using the
actual hardware on which it is intended to run. The virtual machine software
simulates the real, physical target hardware.	

Interpreter	

The idea is that programs will always run on the virtual machine software and
no real hardware will ever exist. The goal is to facilitate portability. With a new
host computer, only the virtual machine software needs to be ported. Then,
millions of application programs become runnable all at once. In this case, the
design of the target “machine” is tailored to facilitate fast interpretation, easy
compiling, and ease of portability. Often, it would be impractical or impossible
to implement the target machine in hardware.	

As an example of an emulator, imagine that you have obtained copy of a program
meant to run on an extinct device (such as Tetris on a GameBoy) and you wish to run
it on your laptop. You need an emulator that can emulate the GameBoy as the target
machine on your host computer.	

Emulators are often used during the development of new computer hardware. The
development of the hardware proceeds in parallel to the development of the
software. Code is developed and debugged on the emulator before the hardware is
fully available and many programmers can be coding using emulators until they can
get their hands on physical devices.	

The Java Virtual Machine is a good example of an interpreter. There are many Java
programs in existence and many Java Virtual Machines installed. You’ve probably got
a Java Virtual Machine on your computer. So you can easily run some Java code
you’ve downloaded from the web on your computer, whether its a Mac, PC, or Linux
box. The same goes for Python, although Python seems to have reverted to using the
term “interpreter” rather than “virtual machine”.	

We should also mention “simulators”. Computer software is digital and bits are
either 0 or 1. At least this is the way software views the machine hardware. However,

Emulator Reference Manual / Porter	 	 Page of 	6 147

Chapter 1: Overview	

at a lower level, the hardware is composed of analog components such as
transistors.	

During the development of new circuitry, “simulators” are used to model the
performance of analog devices. Due to the analog nature of the hardware (voltage
levels, resistance and capacitance, manufacturing variations, etc.), the model is
imperfect. A simulator models the hardware at a deeper level where uncertainty and
probabilities exist. Generally speaking, the term “simulate” is used when the
modeling is not 100% exact and “emulate” when the model is perfectly exact.	

Simulators run much slower than emulators because they are modeling at a greater
level of detail. As an example, an emulator might model a register using a 64 bit
integer variable and emulate a MOV instruction with an assignment statement. On
the other hand, a simulator might model each individual transistor in the register.
Each transistor involves several bits of data as well as information about wires and
connectivity. To model a MOV instruction might involve the switching of hundreds of
transistors, which causes the execution of tens of thousands of instructions in the
simulator. So a simulator can easily run 100 times slower than an emulator.	

A simulator is usually used to debug the hardware. An emulator is usually used to
debug the software.	

An emulator will execute all machine instructions exactly the same way as the
hardware would. Thus, a running program cannot tell whether it is running directly
on real, physical hardware or whether it is running on top of an emulator. Since the
emulator will precisely mimic the hardware, every register and every byte of
memory will contain exactly the same contents, whether emulated or running on
hardware. Every instruction will execute exactly as specified by the Instruction Set
Architecture.	

However, the may be “holes” in the illusion and there may be several differences
between the execution environment provided by emulator and that of physical
hardware. For example, there may be a real-time clock and a program might be able
to use it to determine whether it is running on an emulator or on hardware. It can
use the clock to time the execution of a block of its own code and then, based on the
speed of execution, the program can make determine whether it is being emulated
or running on hardware.	

Also, there may be explicit differences with the I/O devices or other parts of the
system that differ between the emulator and physical hardware. The emulator is,

Emulator Reference Manual / Porter	 	 Page of 	7 147

Chapter 1: Overview	

after all, for the purpose of developing software. It may be unnecessary to emulate
the full machine in order to fulfill the emulator’s function. Put another way, there
may be many versions of the hardware, each with slightly different I/O
configurations. One device might have MicroSD slot while another device has a USB
connector instead. The emulator can be consider just another variation, with its own
particular configuration.	

The Blitz Emulator: An Introduction	

The Blitz emulator is a program named “blitz”. It is written in “C” and runs on the
host computer, e.g., on a Mac laptop. The program emulates a Blitz core, which
allows programs that have been written, compiled, and targeted for Blitz hardware
to execute on a host machine such as a Mac laptop.	

The Blitz emulator is a line-oriented program and is run from a shell command line.	

The Blitz emulator is capable of loading a Blitz executable file in to to memory. The
executable file should be prepared (i.e., compiled, assembled, linked) beforehand
and will exist as a file on the host machine. It will conform to the executable file
format, as described in the document “Blitz-64: Assembler, Linker, and Object File
Format”.	

The Blitz emulator will emulate the Blitz processor core, including:	

	 • The General Purpose Registers	
	 • The Control and Status Registers (CSRs)	
	 • The Translation LookAside Buffer Registers	
	 • The Main Memory	
	 • Several I/O Devices	

The Blitz Emulator is capable of emulating a multi-core processor. In many
situations, only a single core system is needed, but in other situations there may be a
need to emulate several cores, operating on shared memory.	

The emulator can be configured with a configuration file, which contains a number
of parameters that describe the target machine. The configuration file is read upon
startup of the emulator. The configuration parameters include:	

Emulator Reference Manual / Porter	 	 Page of 	8 147

Chapter 1: Overview	

	 • The number of cores	
	 • The topological arrangement if the target is multi-core	
	 • The amount of shared main memory	
	 • The amount of non-shared memory, private and local to each core	
	 • The number of TLB registers	
	 • Where in target memory the memory-mapped I/O devices are placed	
	 • The starting value for the PC (program counter)	
	 • The behavior of the Blitz DEBUG machine instruction	

The emulator runs it either of two modes:	

	 • Auto-go ON	
	 • Auto-go OFF	

The “auto-go” mode is determined by a command line flag. Here is an example
command line, where “auto-go” is enabled.	

Shell% blitz -g MyExamplePgm.exe

The “Shell%” represents the Unix/Linux shell prompt.	

The “auto-go” mode is enabled with the “-g” option. With auto-go, the emulator
immediately begins execution.	

Without auto-go, the emulator begins in command mode, which gives the user
control to execute commands before execution starts.	

The emulator is either executing Blitz machine instructions or is in “command
mode”. Command mode is also called “debugging mode”.	

In command mode, the emulator is driven by commands, which the user enters. The
user types a command, it is executed, and the emulator then prompts for the next
command.	

Here are some of the important emulator commands:	

Command	 Abbreviation
help h Display a menu of commands
quit q Terminate the emulator
go g Begin instruction execution

Emulator Reference Manual / Porter	 	 Page of 	9 147

Chapter 1: Overview	

step s Execute a single instruction
regs r Display register contents
info i Display additional details about core state
rN Update register N (r1, r2, …)	
csr	 	 Update CSR register
dumpMem dm Display main memory
setmem Modify main memory
dis Disassemble contents of memory
stack Display the runtime execution stack
globals Display contents of global variable	

We will describe these commands in detail later in this document.	

The executable file contains information helpful to the debugger. This information
comes from the KPL source code. For example, the executable file contains:	

	 • Variable names (locals, globals, and parameters)	
	 • Information about KPL functions and methods	
	 • Information about KPL statements	
	 • Information about stack frames	

As we said above, the emulator is the debugger. When we refer to the “debugger”,
we mean the emulator operating in command mode. In other words, when the
emulator is not executing instructions, it is in command mode. The user can use the
commands listed above to debug the code.	

Generally speaking, the debugging functions of the emulator work closely with the
compiler and the information placed in the executable file, in order to present as
much information as possible in source-level, KPL terms.	

For example, when an error occurs, the emulator will immediately show the source
file name and the line number within the source code where execution was at the
moment of the error. The user can immediately view the calling stack, to see which
functions are active and the values of the local variables, often presented in a form
determined by their KPL types.	

The emulator reads in all the debugging information when it starts up. This
information comes from the executable file and is not placed in the main memory of
the target Blitz machine.	

Emulator Reference Manual / Porter	 	 Page of 	10 147

Chapter 1: Overview	

When Blitz code is executing on Blitz hardware and not being emulated, the
debugging functions will be performed by the “native debugger” and not by the
emulator running in command mode. The native debugger, which is written in KPL
(with some Blitz assembly), is invoked by the operating system when errors occur.
The native debugger is not documented here.	

Emulator Reference Manual / Porter	 	 Page of 	11 147

Chapter 2: Example Usage	

Summary	

This chapter walks through a simple example. The following emulator commands
will be demonstrated:	

	 go	 Start execution	
	 regs	 Display register values	
	 stack	 Show the runtime stack	
	 globals	 Show values of global variables	
	 watch	 Watch for updates to a memory location	
	 hex	 Convert hex to decimal	
	 where	 Find out where execution is	
	 find	 Find the location of a function	
	 dis	 Disassemble memory	
	 dumpmem	 Display memory contents	
	 dumpmem2	 Display memory contents	
	 step	 Single step execution	
	 rN	 Modify a register	
	 setmem	 Modify memory	
	 quit	 Quit the emulator	

Compiling and Linking a Program	

We start by creating a small KPL program called MyProgram. Here is the “.h”
header file and the “.c” code file for our program: 	

MyProgram.h:	

header MyProgram

Emulator Reference Manual / Porter	 Page of 12 147

Chapter 2: Example Usage	

 uses PrintPackage
 functions
 main ()
endHeader

MyProgram.c:	

code MyProgram
 function main ()
 printf ("Hello, world\n")
 endFunction
endCode

These files can be created with your favorite text editor. 	2

Next, we compile this package to produce a “.s” assembly file. The KPL compiler is a
tool called “kpl”.	

Shell% kpl MyProgram -d ../ -o MyProgram.s

In this document, “Shell%” will be used to represent the Unix/Linux shell prompt.
User input is shown like this.	

Our example package uses PrintPackage, which uses packages System and
HostInterface. The compiler will need to access the header files for these packages.
The “-d” option to the compiler is followed by the directory pathname where these
header files are to be found, if not in the current directory. So this assumes that files
“../PrintPackage.h”, “../System.h”, and “../HostInterface.h” all exist.	

Next, we invoke the Blitz assembler to produce a “.o” object file. The Blitz assembler
is a tool called “asm”:	

Shell% asm MyProgram.s -o MyProgram.o

Next, we must link the object file using the Blitz “link” command, as shown next.	

(This line has been broken into multiple lines for clarity.)	

Shell% link MyProgram.o ../runtime.o ../HostInterface.o
 ../System.o ../PrintPackage.o

 The TextEdit app for macOS works for me.2

Emulator Reference Manual / Porter	 	 Page of 	13 147

Chapter 2: Example Usage	

 -o MyProgram.exe -k

Our example package uses PrintPackage, which uses packages System and
HostInterface. All KPL programs must also be linked with some assembly functions,
which come from runtime.s.	

To keep things simple, we are not using any libraries for this example.	

In practice the Unix/Linux “make” facility could be used. The compile/assemble/
link commands would be collected in a “makefile” and the user would simply type
“make” to compile, assemble, and link any and all files necessary, according to
dependencies and details about which files have been modified recently:	

Shell% make

Typing “make” is a lot quicker and the make facility makes sure that everything that
needs to be updated will get updated.	

We assume that runtime.s and the System, HostInterface, and PrintPackage
packages have been compiled and assembled previously. Using an appropriate
makefile will ensure they get recompiled and reassembled if they have been
modified and their object files are out of date.	

Assuming there were no errors, then the following executable file has been
produced.	

	 MyProgram.exe	

We are ready to run our example program using the emulator.	

Invoking the Emulator	

Next, we will invoke the emulator tool from the Unix/Linux shell command line. The
emulator prints a few opening lines and then waits for a command.	

Shell% blitz MyProgram.exe
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into the PC.

Emulator Reference Manual / Porter	 	 Page of 	14 147

Chapter 2: Example Usage	

===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 August 2019 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

When in debugging mode (i.e., command mode), the emulator prints the prompt	

E>

and and waits for user input. If we type “q” (or “quit”), then emulator immediately
terminates.	

If we type “g” (or “go”), then emulator begins executing instructions and we see
output from the program:	

E> g
Beginning execution...
Hello, world

==================== KPL PROGRAM TERMINATION ====================
Done!
E>

At the prompt, we can type “r” (or “regs”) to display the contents of the registers:	

E> r
===
 csr_instr = 0x0000000000000772
 csr_cycle = 0x0000000000001656
 csr_timer = 0x7fffffffffffe9b8
 csr_status = 0x0000000000000003
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 1, KernelMode: 1)
 csr_stat2 = 0x0000000000000000
 csr_prevpc = 0x0000000000000000
 csr_cause = 0x0000000000000000
 csr_bad = 0x0000000000000000
 csr_addr = 0x0000000000000000
 csr_ptr = 0x0000000000000000
======================== REGISTERS ========================
 r1 = 0x0000000000000000

Emulator Reference Manual / Porter	 	 Page of 	15 147

Chapter 2: Example Usage	

 r2 = 0x0000000000000001 (decimal: 1)
 r3 = 0x0000000000001c30 (decimal: 7216)
 r4 = 0xffffffffffffffff (decimal: -1)
 r5 = 0x0000000000001e68 (decimal: 7784)
 r6 = 0x000000000000000d (decimal: 13)
 r7 = 0x000000000000000d (decimal: 13)
 r8 t = 0x000000000000000d (decimal: 13)
 r9 s0 = 0x000000000fffffb8 (decimal: 268435384)
 r10 s1 = 0x000000000fffffb8 (decimal: 268435384)
 r11 s2 = 0x0000000000000000
 r12 tp = 0x0000000005f77078 (decimal: 100102264)
 r13 gp = 0x0000000000010000 (decimal: 65536)
 r14 lr = 0x000000000000bcac (decimal: 48300)
 r15 sp = 0x000000000fffffc0 (decimal: 268435392)
 Instruction time (all cores) = 1906
=============== NEXT INSTRUCTION TO EXECUTE ===============
 PC = 0x000018968 Address = 0x18968 [PHYSICAL]
 Within Function "EmulatorShutdown" [runtime.s]
 000018968: 19000040 jump TerminateRuntime # PC + 0x4
E>

In this document, I am editing the computer output a little, but I’m only changing the
spacing to make long lines easier to read.	

As another example, we can execute the emulator with the “auto-go” option, which
is enabled with “-g” on the command line. We also use “-nowarn”, which suppresses
warnings and unnecessary messages.	

We will also modify our program by adding a call to the EmulatorShutdown
function:	

MyProgram.c:	

code MyProgram
 function main ()
 printf ("Hello, world\n")
 EmulatorShutdown (0)
 endFunction
endCode

We can recompile it:	

Shell% make

Now when we execute our KPL program, we see nothing but the output from the
program.	

Emulator Reference Manual / Porter	 	 Page of 	16 147

Chapter 2: Example Usage	

Shell% blitz MyProgram.exe -g -nowarn
Hello, world
Shell%

Debugging: An Example	

Next we will modify our example to add a couple of functions. This code has a bug,
as we will see.	

MyProgram.c:	

1:	 code MyProgram
2:	
3:	 function main ()
4:	 var
5:	 i: int = 4
6:	 j: int = 5
7:	 foo1 (i + j)
8:	 printf ("Goodbye\n")
9:	 EmulatorShutdown (0)
10:	 endFunction
11:	
12:	 function foo1 (x: int)
13:	 foo2 (x)
14:	 endFunction
15:	
16:	 function foo2 (myArg: int)
17:	 printf ("myArg = %d\n", myArg)
18:	 myArg = 1 / (myArg - 9)
19:	 endFunction
20:	
21:	 endCode

In this document, some lines will be highlighted	

like this

to focus your attention on the most relevant information.	

Next, we compile and run this program: 	3

 This is an example where long lines were edited to make them easier to read.3

Emulator Reference Manual / Porter	 	 Page of 	17 147

Chapter 2: Example Usage	

Shell% make
...
Shell% blitz MyProgram.exe -g -nowarn
myArg = 9
====================
==================== "System: ERROR_ArithmeticException" was thrown but not
 caught within thread "Main Thread"
====================

The CATCH STACK is empty

********** RUNTIME ERROR: An "ARITHMETIC EXCEPTION" has occurred! **********

 Offending Instruction = 0x0000000000050767

***** Native debugger is not implemented - EXECUTION TERMINATING *****

********** EMULATOR DEBUGGING: Type 'stack' for more info. **********

Execution is stopped at ASSIGN on line 18 in function "foo2" [MyProgram.c]
 005FAF0E4: 00050767 div r7,r6,r7
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 August 2019 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
E>

This program begins in function main, which then calls function foo1 which then
calls function foo2. Function foo2 prints the message “myArg = 9” and then
attempts to divide by zero.	

This division-by-zero causes an Arithmetic Exception, which throws an error.
unfortunately, our little program fails to catch this error, so there is a problem. The
initial error handling occurs in Blitz and the first line indicates the nature of the
error. Then the program gives up and ceases execution.	

Next, emulator debugging begins with a message (also highlighted above), telling
where in the source code the problem arose:	

Emulator Reference Manual / Porter	 	 Page of 	18 147

Chapter 2: Example Usage	

	 • On line 18 in file MyProgram.c	
	 • In an ASSIGNMENT statement	
	 • Within a function named “foo2"	

Finally, the debugger prints a prompt and waits for a user command.	

Next, let’s enter the “stack” command. This will give a summary of the calling
history for this function.	

E> stack
 Function/Method Execution at... File
 ============================== ==================== ==============================
 EmulatorDebuggingRequested runtime.s
 invokeDebugger CALL line 2312 System.c
 RuntimeErrorArithmeticExceptio CALL line 2190 System.c
 _runtimeErrorArithmeticExcepti runtime.s
 foo2 ASSIGN line 18 MyProgram.c
 foo1 CALL line 13 MyProgram.c
 main CALL line 7 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

-------------------- EmulatorDebuggingRequested --------------------
Execution is stopped within Function "EmulatorDebuggingRequested" [runtime.s, line 0]
 Code Address: 000018954
 Frame: 00ffffed0 - 00ffffee0, size = 0x10 (decimal 16)
 offset 0 0x0000... 00ffffed0: 000000000000cc38 codeAddress: int = 52280
I can show you the frames of the callers. How many more frames would
 you like to see (hit ENTER if none)?

The stack shows the functions that are active at the time of the error (main, foo1,
and foo2) and I have highlighted these lines. We also see two functions that are
called upon program startup (_entry, and _kplEntry) which are still active. After the
error arises, four more functions are invoked as part of the error handling sequence,
but we can ignore these.	

After that, we see a representation of the stack frame at the top of the stack. This is
for a function called EmulatorDebuggingRequested . This function and the other
three functions at the top of the calling stack are not particularly interesting since
they happen after the error.	

This ends with a request for the user to type a number. The stack only contains 9
functions, but we will type 999 in order to see the entire stack.	

I can show you the frames of the callers. How many more frames would
 you like to see (hit ENTER if none)? 999

Emulator Reference Manual / Porter	 	 Page of 	19 147

Chapter 2: Example Usage	

-------------------- invokeDebugger --------------------
Execution is stopped at CALL on line 2312 in function "invokeDebugger" [System.c]
 Code Address: 000006a04
 Frame: 00ffffee0 - 00ffffef0, size = 0x10 (decimal 16)
 arg offset 16 0x0010... 00ffffef0: 000000000000cc38 codeAddress: int = 52280

-------------------- RuntimeErrorArithmeticException --------------------
Execution is stopped at CALL on line 2190 in function "RuntimeErrorArithmeticException"
 [System.c]
 Code Address: 0000064dc
 Frame: 00ffffef0 - 00fffff58, size = 0x68 (decimal 104)
 arg offset 104 0x0068... 00fffff58: 000000000000cc38 codeAddress: int = 52280
 arg offset 112 0x0070... 00fffff60: 0000000000050767 offendingInstr: int = 329575
 offset 80 0x0050... 00fffff40: 0000000000002be8 errorID: String = "System:
ERROR_ArithmeticException"
 offset 88 0x0058... 00fffff48: 0000000000006498 codeAddr_notUsed: int = 25752

-------------------- _runtimeErrorArithmeticException --------------------
Execution is stopped within Function “_runtimeErrorArithmeticException"
 [runtime.s, line 0]
 Code Address: 000018774
 Frame: 00fffff58 - 00fffff70, size = 0x18 (decimal 24)

-------------------- foo2 --------------------
Execution is stopped at ASSIGN on line 18 in function "foo2" [MyProgram.c]
 Code Address: 00000cc30
 Frame: 00fffff70 - 00fffffa0, size = 0x30 (decimal 48)
 arg offset 48 0x0030... 00fffffa0: 0000000000000009 myArg: int = 9

-------------------- foo1 --------------------
Execution is stopped at CALL on line 13 in function "foo1" [MyProgram.c]
 Code Address: 00000cb98
 Frame: 00fffffa0 - 00fffffb0, size = 0x10 (decimal 16)
 arg offset 16 0x0010... 00fffffb0: 0000000000000009 x: int = 9

-------------------- main --------------------
Execution is stopped at CALL on line 7 in function "main" [MyProgram.c]
 Code Address: 00000cb40
 Frame: 00fffffb0 - 00ffffff0, size = 0x40 (decimal 64)
 offset 40 0x0028... 00fffffd8: 0000000000000004 i: int = 4
 offset 48 0x0030... 00fffffe0: 0000000000000005 j: int = 5

-------------------- _kplEntry --------------------
Execution is stopped within Function "_kplEntry" [MyProgram.c, line 0]
 Code Address: 00000c8a4
 Frame: 00ffffff0 - 00ffffff8, size = 0x8 (decimal 8)

-------------------- _entry --------------------
Execution is stopped within Function "_entry" [runtime.s, line 0]
 Code Address: 000018888
 Frame: 00ffffff8 - 010000000, size = 0x8 (decimal 8)
E>

The frames for the three functions of interest are highlighted. We can see that the
error occurred in function foo2 which was called from function foo1, which was
called from the main function.	

Emulator Reference Manual / Porter	 	 Page of 	20 147

Chapter 2: Example Usage	

Now let’s look more closely at the frame for the main function. Here are the relevant
line from above, repeated with different highlighting:	

-------------------- main --------------------
Execution is stopped at CALL on line 7 in function "main" [MyProgram.c]
 Code Address: 00000cb40
 Frame: 00fffffb0 - 00ffffff0, size = 0x40 (decimal 64)
 offset 40 0x0028... 00fffffd8: 0000000000000004 i: int = 4
 offset 48 0x0030... 00fffffe0: 0000000000000005 j: int = 5

We see that the call (to foo1) occurred at line 7 in file MyProgram.c. We also see the
values of the local variables i and j. These variables have type integer, and their
values are shown in decimal.	

To illustrate the capabilities of the debugger to display the values of variables in
human-friendly source form, let’s create another function foo3:	

 function foo3 (myArg1: int, myArg2: bool)
 var
 localVar1: byte
 localVar2: halfword
 localVar3: word
 localVar4: int
 localVar5: double
 localVar6: String
 localVar7: Person
 localVar8: ptr to Person
 localVar9: array [5] of byte
 …
 myArg1 = 123
 myArg2 = true
 localVar1 = 'a'
 localVar2 = 12345
 localVar3 = 100200300
 localVar4 = MAX_64
 localVar5 = 3.141596
 localVar6 = "greetings"
 localVar7 = new Person {f = 57}
 localVar8 = & localVar7
 localVar9 = new array of byte {11,22,33,44,55}

 <<< Execution is stopped here >>>
 …
 endFunction

Assume that execution is stopped within this function. Here is what we might see
with the “stack” command. 	4

 This output was edited a little, but only spacing to make long lines easier to read.4

Emulator Reference Manual / Porter	 	 Page of 	21 147

Chapter 2: Example Usage	

-------------------- foo3 --------------------
Execution is stopped at RETURN on line 47 in function "foo3" [MyProgram.c]
 Code Address: 005faf284
 Frame: 00fffff48 - 00fffffb0, size = 0x68 (decimal 104)
 arg offset 104 0x0068... 00fffffb0: 000000000000007b myArg1: int = 123
 arg offset 112 0x0070... 00fffffb8: 01 myArg2: bool = true
 offset 94 0x005e... 00fffffa6: 61 localVar1: byte = 'a'
 (decimal 97)
 offset 92 0x005c... 00fffffa4: 3039 localVar2: halfword = 12345
 offset 88 0x0058... 00fffffa0: 05f8ef6c localVar3: word = 100200300
 offset 24 0x0018... 00fffff60: 7fffffffffffffff localVar4: int =
 9223372036854775807
 offset 32 0x0020... 00fffff68: 400921fd1569f490 localVar5: doubleFloat =
 3.141596
 offset 40 0x0028... 00fffff70: 0000000000002880 localVar6: String = "greetings"
 offset 48 0x0030... 00fffff78: 0000000005faf298 localVar7: object
 offset 64 0x0040... 00fffff88: 000000000fffff78 localVar8: ptr ---> to a
 Person object at 0x00fffff78
 offset 72 0x0048... 00fffff90: 0000000500000005 localVar9: array (currentSize =
 5, maxSize = 5)

As you can see, the debugger displays values in terms appropriate for the type of the
variable. However, the debugger lacks information about the fields in objects or the
element types in arrays, which imposes some limits.	

Debugging: A Second Example	

In this example, we will exhibit the ability to:	

	 • See if a particular statement is executed	
	 • Stop the program at a given place	
	 • Disassemble the assembly code	
	 • Watch for any change to a variable	
	 • Modify the variable 	

For this example, assume we have a global variable named myGlob: 	

var myGlob: int = -1

We will be invoking this function:	

function foo4 (myArg: int) returns int
 myGlob = myArg + 456
 return myGlob * 100
endFunction

Emulator Reference Manual / Porter	 	 Page of 	22 147

Chapter 2: Example Usage	

Let us assume that we want to find out where myGlob is being modified. So we start
the program, but without the “-g” auto-go option:	

Shell% blitz MyProgram.exe

We use the “globals” command to list all global variables:	

E> globals
From package "MyProgram.c"...
 line 48 000002880: ffffffffffffffff myGlob: int = -1
From package "runtime.s"...
From package "HostInterface.c"...
 line 84 0000023c8: 00000000000023e0 stdin: ptr --> ...
 line 85 0000023d0: 00000000000023e8 stdout: ptr --> ...
 line 86 0000023d8: 00000000000023f0 stderr: ptr --> ...
 line 87 0000023e0: 0000000000000000 stdinFILE: struct
 line 88 0000023e8: 0000000000000001 stdoutFILE: struct
 line 89 0000023f0: 0000000000000002 stderrFILE: struct
 line 61 0000023f8: 0000000000018e88 print: ptr --> ...
 line 62 000002400: 0000000000018e40 readString: ptr --> ...
 line 90 000002980: 0000000000000000 errno: int = 0
From package "System.c"...
 line 40 000000008: 00 alreadyInAlloc: bool = false
 line 37 000018f48: 0000000000000000 TheHeapArray: array
...

The highlighted lines show where variable myGlob is located in memory.	

Next, we use the “watch” command, which will prompt for a memory address.	

E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: 000002880
Execution will halt whenever address 0x000002880 is stored into.
E>

Next, we use the “go” command to begin execution:	

E> g
Beginning execution...

********** The value 0x000000000001e240 was stored into the 'watched'
 address (000002880) at instr time = 366 **********
Done!
E>

Emulator Reference Manual / Porter	 	 Page of 	23 147

Chapter 2: Example Usage	

We see the value, but it is in hex. Fortunately, the emulator has commands “hex”,
“dec”, and “ascii” which come in handy to convert values.	

E> hex
Enter a value in hex: 1e240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: “.......@"
 real: 6.099536837297693335786247689e-319
E>

We see that the decimal value is 123456, as expected.	

Next, we use the “where” command to see where execution is stopped.	

E> where
Enter an address in hex (or 0 for current PC): << ENTER >>
CURRENT LOCATION OF PC:
 RETURN on line 53 in function "foo4" [MyProgram.c]
 00000CD80: 04006406 movi r6,100 # synthetic for XORI r6,r0,0x64
E>

Next, assume that we want to stop execution at a particular location in the source
code. KPL contains a “debug” statement which we can use. We will insert a debug
statement into out code, as shown next. The debug keyword is followed by a string,
which becomes useful when we having several debug statements scattered through
the program. For this example, we just use the string “here”.	

Let’s add a debug statement to our function:	

function foo4 (myArg: int) returns int
 debug "here"
 myGlob = myArg + 456
 return myGlob * 100
endFunction

We recompile the program and re-run it:	

Shell% make
...
Shell% blitz MyProgram.exe -g
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into the PC.
Beginning execution...

Emulator Reference Manual / Porter	 	 Page of 	24 147

Chapter 2: Example Usage	

**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 51)
 ---------- ################# here #################
 00000CD74: 00280000 debug
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 August 2019 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

The program is now stopped. Let’s look at the assembly code for this function.	

First, we can look in the “.s” assembly code file, MyProgram.s. The file might be
quite large, but we can search for our string “here” to find the debug statement.	

Here are the relevant lines from the assembly code file:	

=============== FUNCTION foo4 ===============

.align 4
_function_6_foo4:

.function "foo4",line=50,framesize=8
store.d -8(sp),lr # Save return addr
addi sp,sp,-8 # Allocate frame (8 bytes)
stored 8(sp),r1 # myArg <-- r1

Zero out 0 bytes of frame
VARIABLE INITIALIZATION...

.stmt debug,line=51

.comment "################# here #################"
debug

ASSIGNMENT STATEMENT...
.stmt assign,line=52
loadd r7,8(sp) # myArg
addi r7,r7,456
stored _GlobalVar_myGlob,r7

RETURN STATEMENT...
.stmt return,line=53

Emulator Reference Manual / Porter	 	 Page of 	25 147

Chapter 2: Example Usage	

movi r6,100 # 0x0000000000000064
mul r7,r7,r6
mov r1,r7
addi sp,sp,8
load.d lr,-8(sp)
ret
.local 8,"myArg",line=50,type="I"
.endfunction

As you can see, the KPL compiler adds some commenting.	

In reading the above code, note that the .function, .stmt, .comment, .local,
and .endfunction directives provide supplemental debugging information. This
debugging information will be present in the executable file, but will not be loaded
into memory during execution. This information is read from the executable file by
the emulator and used to facilitate debugging. These directives are how the compiler
communicates information to the debugger, so the debugger can display data in
human-friendly forms.	

The highlighted lines above correspond to the following assignment statement.	

 myGlob = myArg + 456

Next, in the debugger, we use the “find” command to determine at what address the
function “foo4” is located. Private functions have names beginning with “_function”
so we enter this when prompted.	

E> find
Enter the first few characters of the symbol; all matching will be printed: _func
 Symbol Value (hex) Value (decimal) Label Source line number
 / filename
 =================================== =========== =============== ===== ====================
 _function_137_printClassNameFromDPT 6AF0 27376 LABEL 8567 System.s
 _function_138_printClassNameOfObject 6A24 27172 LABEL 8448 System.s
 _function_139_invokeDebugger 69C0 27072 LABEL 8387 System.s
 _function_140_KPLDefaultFatalErrorFunction 588C 22668 LABEL 6144 System.s
 _function_141_KPLMemoryFree_Version1 33D4 13268 LABEL 1642 System.s
 _function_142_KPLMemoryAlloc_Version1 32C8 13000 LABEL 1524 System.s
 _function_143_KPLMemoryFree_Default 3298 12952 LABEL 1492 System.s
 _function_144_KPLMemoryAlloc_Default 3204 12804 LABEL 1433 System.s
 _function_19_hostDateNext BE84 48772 LABEL 2299 HostInterface.s
 _function_20_hostDateSize BE5C 48732 LABEL 2277 HostInterface.s
 _function_21_argumentNext BCE8 48360 LABEL 2106 HostInterface.s
 _function_22_argumentSize BCC4 48324 LABEL 2086 HostInterface.s
 _function_26_LocalPrintString 75D8 30168 LABEL 521 PrintPackage.s
 _function_27_LocalPrintChar 758C 30092 LABEL 475 PrintPackage.s
 _function_6_foo4 CD68 52584 LABEL 670 MyProgram.s
 _function_7_foo3 CBBC 52156 LABEL 496 MyProgram.s
 _function_8_foo2 CB90 52112 LABEL 471 MyProgram.s
 _function_9_foo1 CB6C 52076 LABEL 446 MyProgram.s
E>

Emulator Reference Manual / Porter	 	 Page of 	26 147

Chapter 2: Example Usage	

The highlighted line shows that the function foo4 is located at address
0x00000cd68.	

Next, we use the disassemble command “dis” to display memory at that location. It
displays about a page worth of data, but we show only the first half of it here:	

E> dis
Enter the beginning address (in hex): cd68
 Function "foo4" [MyProgram.c]
 _function_6_foo4:
 00000CD68: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
 00000CD6C: 01FFF8FF addi sp,sp,-8
 00000CD70: 220001F8 store.d 8(sp),r1
 DEBUG (line 51)
 ---------- ################# here #################
 00000CD74: 00280000 debug
 ASSIGN (line 52)
 00000CD78: 1E0008F7 load.d r7,8(sp)
 00000CD7C: 0101C877 addi r7,r7,456 # hex = 0x1C8
 00000CD80: 22288700 store.d 10368(r0),r7 # offset = 0x2880
 RETURN (line 53)
 00000CD84: 04006406 movi r6,100 # synthetic for
 XORI r6,r0,0x64
 00000CD88: 00040677 mul r7,r7,r6
 00000CD8C: 03000071 mov r1,r7 # synthetic for ORI _,_,0
 00000CD90: 010008FF addi sp,sp,8
 00000CD94: 1EFFF8FE load.d lr,-8(sp) # offset = 0xFFF8
 00000CD98: 1A0000E0 ret # synthetic for
 JALR r0,0(lr)
...
E>

I have highlighted the statement of interest so you can compare the output from the
“dis” disassemble command to the original assembly code.	

We can display raw memory as a sequence of doublewords, using the “dumpmem”
command (which can be abbreviated to “dm”):	

E> dm
Enter the starting address in hex: cd68
00000cd68: 00 0x22fffef801fff8ff 2522014657489664255 ".......
00000cd70: 08 0x220001f800280000 2449960361955688448 "....(..
00000cd78: 10 0x1e0008f70101c877 2161737678104676471 w
00000cd80: 18 0x2228870004006406 2461365630494860294 "(....d.
00000cd88: 20 0x0004067703000071 1133008128049265 ...w...q
00000cd90: 28 0x010008ff1efff8fe 72067485867702526
00000cd98: 30 0x1a0000e000000000 1873498407058800640
...

Emulator Reference Manual / Porter	 	 Page of 	27 147

Chapter 2: Example Usage	

E>

We can also display the memory in a more byte-oriented way, using the
“dumpmem2” command (which can be abbreviated to “dm2”):	

E> dm2
Enter the starting (physical) memory address in hex: cd68
Enter the number of bytes in hex (or 0 to abort): 100
PRIVATE MEMORY:
00000cd68: 22FF FEF8 01FF F8FF 2200 01F8 0028 0000 "......."....(..
00000cd78: 1E00 08F7 0101 C877 2228 8700 0400 6406 w"(....d.
00000cd88: 0004 0677 0300 0071 0100 08FF 1EFF F8FE ...w...q........
00000cd98: 1A00 00E0 0000 0000 0000 0000 0000 CDB0
...
E>

Recall that execution is stopped at the debug statement, directly before the
assignment statement. Next we use the “step” command (which can be abbreviated
“s”) to execute a single machine instruction:	

E> s
Executing this instruction:
 00000CD78: 1E0008F7 load.d r7,8(sp) # offset = 0x8
Instr count = 365
E>

Next, let’s look see what value was loaded into register r7, using the “regs”
command:	

E> r
...
 r6 = 0x0000000005f77090 (decimal: 100102288)
 r7 = 0x000000000001e078 (decimal: 123000)
 r8 t = 0x0000000005f70000 (decimal: 100073472)
...
=============== NEXT INSTRUCTION TO EXECUTE ===============
 PC = 0x00000CD7C Address = 0xCD7C [PHYSICAL]
 Within ASSIGN (line 52)
 00000CD7C: 0101C877 addi r7,r7,456 # hex = 0x1C8
E>

Now we can execute another instruction.	

E> s
Executing this instruction:
 00000CD7C: 0101C877 addi r7,r7,456 # hex = 0x1C8
Instr count = 366
E>

Emulator Reference Manual / Porter	 	 Page of 	28 147

Chapter 2: Example Usage	

Once again, we might wish to examine the register with the “regs” command, but we
don’t need to illustrate that again.	

Next, let’s alter the value with the “r7” command. (There is one such command for
each register: r1, r2, … r15).	

E> r7
 r7 = 0x000000000001e240 (decimal: 123456)
Enter the new value (in hex): 9fbf1
 r7 = 0x000000000009fbf1 (decimal: 654321)
E>

Next, we execute the next instruction (stored).	

E> s
Executing this instruction:
 00000CD80: 22288700 store.d 10368(r0),r7 # offset = 0x2880
Instr count = 367
E>

Next, we verify that the desired value was stored into the memory address for the
variable myGlob, using both the “dumpmem” and “globals” commands.	

E> dm
Enter the starting address in hex: 2880
000002880: 00 0x000000000009fbf1 654321 @
...
E> globals
From package "MyProgram.c"...
 line 48 000002880: 000000000009fbf1 myGlob: int = 654321
...
E>

Next, let’s modify memory directly, using the “setmem” command. We will change
variable myGlob to a new value.	

E> setmem
Enter the (physical) memory address in hex of the doubleword to be modified:
2880
***** This address is in private RAM or shared RAM *****
The old value is:
0x000002880: 0x000000000009FBF1
Enter the new value (8 bytes in hex): 36870
0x000002880: 0x0000000000036870
E>

Emulator Reference Manual / Porter	 	 Page of 	29 147

Chapter 2: Example Usage	

Next, we use the “globals” command to verify that we have changed the value
correctly.	

E> globals
From package "MyProgram.c"...
 line 48 000002880: 0000000000036870 myGlob: int = 223344
...
E>

Finally, we can resume program execution with the “go” command (which can be
abbreviated “g”):	

E> go
...

Or perhaps we will terminate the emulator with the “quit” command (which can be
abbreviated “q”):	

E> quit
Shell%

Emulator Reference Manual / Porter	 	 Page of 	30 147

Chapter 3: Commands	

Introduction	

In this chapter we describe each command.	

Several commands require arguments. The arguments are not entered on the same
line. Each command is typed separately, followed by NEWLINE / ENTER / RETURN. 	

When arguments are required, the command will prompt for them.	

In some cases, the argument must be a hex value. A leading “0x” is optional and
either upper or lower can be used.	

Generally speaking, the commands will do their best to verify that the user has
entered legal values.	

Several common commands have an abbreviation; either form can be used.	

If an invalid command is entered, the emulator will complain and prompt for the
next command.	

E> aBadEntryyy
Unrecognized command.
Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

In a multi-core system, things can get confusing. At any one time, one of the cores is
selected as the “current core”. This code is the focus of many instructions. For
example, the “regs” command will display the registers of the current core. The
“cores” command can be used to change the focus.	

The emulator is designed to display its output in a fixed-width font and it assumes
that the output window is wide enough to accommodate long line. Within this

Emulator Reference Manual / Porter	 Page of 31 147

Chapter 3: Commands	

document, I have altered the spacing of some very long lines, to make the output
more readable.	

For example, the following lines from the emulator (which will be discussed later):	

 4 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest, NV/OF/UF/DZ/NX:
00000, SingleStep: 0, InterruptsEnabled: 0, KernelMode: 1)

 TLB REGISTER ASID Virt Page Phys Page W X D V
C
 ================== ====== =========== =========== === === ===
=== ===

will be altered to the following:	

 4 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 1)

 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===

When the emulator goes into command mode, it will print a welcome message, such
as:	

Shell% blitz MyProgram.exe
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into the PC.
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

In Blitz, program version numbers are not used. Instead, the author and date are
used to indicate the version. From the above, you can see which version is
documented in this document.	

Emulator Reference Manual / Porter	 	 Page of 	32 147

Chapter 3: Commands	

The Commands	

q quit

This command immediately terminates the emulator.	

If the ROM or SecureStorage has been updated, this command will ask about writing
back to the host file before exiting.	

The Unix/Linux “exit” code will be 0.	

h help

This command produces the following display:	

===
This program accepts commands typed into the terminal. Each command
should be typed without any arguments; the commands will prompt for
arguments when needed. Case is not significant. Some abbreviations
are allowed, as shown. Typing control-C will halt execution.

The available commands are:
 quit - Terminate this program
 q
 help - Produce this display
 h
 info - Display the current state of the core
 i
 regs - Display a summary of the registers
 r
 r1 - Change the value of register r1

 r15 Change the value of register r15
 tlb - Change the value of TLB register
 csr - Change the value of CSR register
 pc - Set the Program Counter (PC)
 setmem - Used to alter memory contents
 ld - Load 1/2/4/8 bytes from memory or I/O device

Emulator Reference Manual / Porter	 	 Page of 	33 147

Chapter 3: Commands	

 st - Store 1/2/4/8 bytes to memory or I/O device
 dumpMem - Display the contents of memory
 dm
 dumpMem2 - Display the contents of memory (basic format)
 dm2
 dis - Disassemble several instructions
 d - Disassemble several instructions from the current location
 stack - Display stack frames
 stack2 - Display stack frames, asking for thread details
 stackmem - Display top words of stack
 sm
 globals - Display the global variables
 trans - See what the MMU would do with a virtual address
 addr - Enter an address; show it in page/offset format
 addr2 - Enter page and offset format; show as address
 read - Read a doubleword from memory-mapped I/O region
 write - Write a doubleword to memory-mapped I/O region
 cores - Display the status of all cores for this processor
 sel - Change the currently selected core
 symbols - Display all symbols
 dinfo - Display all debugging information
 find - Find a symbol by spelling
 find2 - Find a symbol by value
 where - Ask for an address and attempt to locate that in the source code
 go - Begin or resume BLITZ instruction execution
 g
 step - Single step; execute one machine-level instruction
 s
 stepn - Execute N machine-level instructions
 n
 t - Execute instructions until we encounter a CALL or RETURN
 or EXCEPTION
 watch - Stop execution when ever an address is stored into
 reset - Reset the machine state and re-read the a.out file
 rerun - Do a 'reset', followed by 'go'
 hex - Convert a user-entered hex number into decimal and ascii
 dec - Convert a user-entered decimal number into hex and ascii
 ascii - Convert a user-entered ascii char into hex and decimal
 sim - Display the current simulation constants; create "emulationParms"
 rom - Create, manipulate files "emulationROM" and "emulationSecure"
 serial - Control serial input
 sched - Modify the multicore timeslice schedule
 startall - Change all STOPPED cores to RUNNING
 start - Change selected cores to RUNNING
 stopall - Change all RUNNING cores to STOPPED
 stop - Change selected cores to STOPPED
 <nl> - Print some useful info
===

Emulator Reference Manual / Porter	 	 Page of 	34 147

Chapter 3: Commands	

i info

This command produces a display showing the general state of the machine. An
example is shown below.	

This include:	

	 General information about the entire system:	
	 	 • Main memory details	
	 	 • Memory-mapped I/O device locations	
	 	 • Number of cores	
	 Information about the “current” core:	
	 	 • The TLB registers	
	 	 • The CSR registers	
	 	 • The general purpose registers	
	 	 • The PC	

E> i
============================
 Private RAM memory: 0x000000000 ... 0x010000000 256 MiBytes
 Shared RAM memory: 0x010000000 ... 0x010010000 64 KiBytes
 Bootstrap ROM memory: 0x400000000 ... 0x400100000 1 MiByte
 Secure Storage device: 0x400100000 ... 0x400104000 16 KiBytes
 Simple serial device addr: 0x400104000 ... 0x400108000 16 KiBytes
 Multi-core array (columns: 1, rows: 1, planes: 1); total number of cores = 1
 Addressable memory per core = 0x0000000010010000 >256 MiBytes
 Total physical memory = 0x0000000010010000 >256 MiBytes
Number of Instructions Executed (so far) = 0
 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===
 TLB[0]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[1]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[2]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[3]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[4]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[5]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[6]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[7]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[8]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[9]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[10]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[11]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[12]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[13]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[14]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[15]: 0x0000000000000000 0x0000 0x800000000 0x000000000

Emulator Reference Manual / Porter	 	 Page of 	35 147

Chapter 3: Commands	

===== CONTROL AND STATUS REGISTERS =====
 0 csr_version = 0x0123456700000001 (CyclesPerMilliSec: 0x01234567,
 Version: 0x0001)
 1 csr_instr = 0x0000000000000000
 2 csr_cycle = 0x0000000000000000
 3 csr_timer = 0x0000000000000000
 4 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 1)
 5 csr_stat2 = 0x0000000000000000
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 0)
 6 csr_prevpc = 0x0000000000000000
 7 csr_cause = 0x0000000000000000
 8 csr_bad = 0x0000000000000000
 9 csr_addr = 0x0000000000000000
 10 csr_ptr = 0x0000000000000000
 11 csr_temp1 = 0x0000000000000000
 12 csr_temp2 = 0x0000000000000000
 13 csr_temp3 = 0x0000000000000000
 14 csr_extra1 = 0x0000000000000000
 15 csr_extra2 = 0x0000000000000000
===== REGISTERS =====
 r0 zero = 0x0000000000000000
 r1 = 0x636f6c64626f6f74 (decimal: 7165064710573748084)
 r2 = 0x0000000010000000 (decimal: 268435456)
 r3 = 0x0000000010000000 (decimal: 268435456)
 r4 = 0x0000000000010000 (decimal: 65536)
 r5 = 0x0000000005f77110 (decimal: 100102416)
 r6 = 0x0000000000000000
 r7 = 0x0000000000000000
 r8 t = 0x0000000000000000
 r9 s0 = 0x0000000000000000
 r10 s1 = 0x0000000000000000
 r11 s2 = 0x0000000000000000
 r12 tp = 0x0000000000000000
 r13 gp = 0x0000000000000000
 r14 lr = 0x0000000000000000
 r15 sp = 0x0000000000000000
===== PROGRAM COUNTER =====
 PC = 0x00001885C Address = 0x1885C [PHYSICAL]
 Within Function "_entry" [runtime.s]
 _entry:
 00001885C: 15800001 upper16 r1,r0,-32768 # hex = 0x8000
=============================
E>

Use the cores command to switch to a different core.	

Emulator Reference Manual / Porter	 	 Page of 	36 147

Chapter 3: Commands	

r regs

This command produces a display showing the registers of the currently selected
core. For example:	

E> r
===
 csr_instr = 0x0000000000000000
 csr_cycle = 0x0000000000000000
 csr_timer = 0x0000000000000000
 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 1)
 csr_stat2 = 0x0000000000000000
 csr_prevpc = 0x0000000000000000
 csr_cause = 0x0000000000000000
 csr_bad = 0x0000000000000000
 csr_addr = 0x0000000000000000
 csr_ptr = 0x0000000000000000
======================== REGISTERS ========================
 r1 = 0x636f6c64626f6f74 (decimal: 7165064710573748084)
 r2 = 0x0000000010000000 (decimal: 268435456)
 r3 = 0x0000000010000000 (decimal: 268435456)
 r4 = 0x0000000000010000 (decimal: 65536)
 r5 = 0x0000000005f77110 (decimal: 100102416)
 r6 = 0x0000000000000000
 r7 = 0x0000000000000000
 r8 t = 0x0000000000000000
 r9 s0 = 0x0000000000000000
 r10 s1 = 0x0000000000000000
 r11 s2 = 0x0000000000000000
 r12 tp = 0x0000000000000000
 r13 gp = 0x0000000000000000
 r14 lr = 0x0000000000000000
 r15 sp = 0x0000000000000000
 Instruction time (all cores) = 0
=============== NEXT INSTRUCTION TO EXECUTE ===============
 PC = 0x00001885C Address = 0x1885C [PHYSICAL]
 Within Function "_entry" [runtime.s]
 _entry:
 00001885C: 15800001 upper16 r1,r0,-32768 # hex = 0x8000
E>

This displays a subset of what the info command displays and is more convenient.	

Emulator Reference Manual / Porter	 	 Page of 	37 147

Chapter 3: Commands	

r1, r2, … r15

The registers can be modified individually with this command.	

This command prints the previous value and asks for a new value.	

For example:	

E> r1
 r1 = 0x636f6c64626f6f74 (decimal: 7165064710573748084)
Enter the new value (in hex): 123456
 r1 = 0x0000000000123456 (decimal: 1193046)
E>

There is no ability to cancel, but with copy-paste you can just enter the previous
value.	

This instruction applies only to the currently selected core.	

tlb

This command allows you to change a particular TLB register to a given value.	

Each TLB register is made of several bit fields. This command first displays the
current value of the register (a 64 bit value), together with a breakout of the bit
fields.	

Consult the Instruction Set Architecture manual for details of the fields.	

This command first prompts for the number of the register to be modified. In this
example, the cores are configured to have 16 TLB registers, each.	

After displaying the current value, it prompts for the field individually. Finally, it
packs the input fields into a 64 bit value, updates the register, and displays the new
value.	

For example:	

Emulator Reference Manual / Porter	 	 Page of 	38 147

Chapter 3: Commands	

E> tlb
Enter TLB number (0..15): 7
 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===
 TLB[7]: 0x0000000000000000 0x0000 0x800000000 0x000000000
Enter the new value...
Enter the 16 bit ASID: 1234
Enter the 21 bit Page Number: aaa
Enter the 21 bit Physical Page Number: bbb
Want to set WRITABLE bit to 1? y
Want to set EXECUTBLE bit to 1? n
Want to set DIRTY bit to 1? y
Want to set VALID bit to 1? n
Want to set COPY-ON-WRITE bit to 1? y
 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===
 TLB[7]: 0x123400555002EED5 0x1234 0x802AA8000 0x002EEC000 W D C
E>

The “Virt Page” and “Phys Page” columns give the starting address of the page.
Virtual addresses will always have the upper bit set and the Physical addresses will
never have the upper bits set. Both will always have the least significant 14 bits set
to 0.	

This instruction applies only to the currently selected core.	

csr

This command allows the user to modify any CSR register. The old value is printed
and the user is prompted to enter a new value.	

For example:	

E> csr
Enter CSR number (0..15): 1
 CSR [1] = 0x000000000000016C
Enter the new value (in hex): 1234
 CSR [1] = 0x0000000000001234
E>

Emulator Reference Manual / Porter	 	 Page of 	39 147

Chapter 3: Commands	

CSR register 1 is CSR_INSTR, which is read-only. As this example shows, the user can
modify registers that the ISA requires to be read-only, although it is unclear why that
would be a good thing to do.	

This instruction applies only to the currently selected core.	

pc

This command displays the current value of the program counter (PC) and prompts
the user to enter a new value.	

The PC is updated and the new value is displayed.	

As the next example shows, the debugger also prints out useful information about
where in the program this location is and disassembles the machine instruction at
that address.	

E> pc
 Old PC = 0x00000CD70
Please enter the new value for the program counter (PC) in hex: 00000CD3C
 New PC = 0x00000CD3C
 Within ASSIGN (line 42)
 _Label_41:
 00000CD3C: 1000103C b.eq r3,r0,0x1C # if (r3 == r0) goto _Label_39
E>

The additional information may not be available for some addresses. For example:	

E> pc
 Old PC = 0x00000CD70
Please enter the new value for the program counter (PC) in hex: 120000
 New PC = 0x000120000
 000120000: 00000000
E>

At the prompt for a new PC, the user can hit NEWLINE / ENTER / RETURN to cancel
the command.	

This instruction applies only to the currently selected core.	

Emulator Reference Manual / Porter	 	 Page of 	40 147

Chapter 3: Commands	

setmem

This command is used to modify memory.	

The command first prompts for an address. This address must be doubleword
aligned.	

Then it prompts for a doubleword value, which is written to memory. For example:	

E> setmem
Enter the (physical) memory address in hex of
 the doubleword to be modified: 120000
***** This address is in private RAM or shared RAM *****
The old value is:
0x000120000: 0x0000000000000000
Enter the new value (8 bytes in hex): 1234567890abcdef
0x000120000: 0x1234567890ABCDEF
E>

This command can be used to modify either shared main memory or the private
main memory of the currently selected core.	

This command can be used to write to the “Boot ROM” area. The ROM contents are
kept in a file called “emulationROM”. For example:	

E> setmem
Enter the (physical) memory address in hex of
 the doubleword to be modified: 400000000
***** This address is in Boot ROM, but you can proceed to store to it *****
The old value is:
0x400000000: 0x17000E4104000E02
Enter the new value (8 bytes in hex): 1111aaaa2222bbbb
0x400000000: 0x1111AAAA2222BBBB
E>

If it has been updated, the emulator will alert the user and ask about updating it at
the time the emulator quits.	

E> q
The ROM has been modified. Shall I write it out
 to the host file ("emulationROM")? n
Shell%

Emulator Reference Manual / Porter	 	 Page of 	41 147

Chapter 3: Commands	

This command can also be used to write to the “Secure Storage Device” area, which
is discussed in the ISA manual. The contents are kept in a file called
“emulationSecure”. For example:	

E> setmem
Enter the (physical) memory address in hex of
 the doubleword to be modified: 0x400100000
***** This address is in Secure Storage *****
The old value is:
0x400100000: 0x8888777766665555
Enter the new value (8 bytes in hex): 1111222233334444
0x400100000: 0x1111222233334444
E>

If it has been updated, the emulator will alert the user and ask about updating it at
the time the emulator quits. For example:	

E> q
The SecureStorage has been modified. Shall I write it out
 to the host file ("emulationSecure")? n
Shell%

ld

This command is used to read 1, 2, 4, or 8 bytes from the memory system and
display it. The command prompts for the address and the number of bytes to read.	

See also the “st” command, which writes instead of reads.	

Address translation is performed (using the TLB registers as described in the Blitz
Instruction Set Architecture). The command reminds the user of details such as the
current ASID (Address Space Identifier) and Kernel Mode bits, which come from the
CSR_STATUS register.	

E> ld
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 4
Your Input Address = 0xCD74 [PHYSICAL]
Translated Address = 0xCD74 [PHYSICAL]
0x00000cd74: 0x00280000 (decimal: 2621440)

Emulator Reference Manual / Porter	 	 Page of 	42 147

Chapter 3: Commands	

E>

In certain cases, the address translation will fail and would cause an exception if
attempted by an executing program. For example, an attempt to access physical
memory when running in User Mode will cause a TLB PRIVILEGE EXCEPTION.	

This command will deal with exceptional addresses by indicating the problem. For
example:	

E> ld
 NOTE: The core is in user mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 4
Your Input Address = 0xCD74 [PHYSICAL]
 ----- This will cause a TLB_PRIVILEGE EXCEPTION
E>

As another example, consider an attempt to read a doubleword from an address that
is not doubleword aligned:	

E> ld
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 8
Your Input Address = 0xCD74 [PHYSICAL]
 ----- This will cause an UNALIGNED_LOAD_STORE EXCEPTION
E>

The ld command can be used to read from a memory-mapped I/O device. In the next
example, we read from the location (0x4_0010_4000) used by the “Simple Serial
Device” to get a single character of input from the user.	

When the LOAD operation is performed, the emulator immediately hangs, waiting
for the user to enter something. In this example, the user types the letter “q”,
followed by NEWLINE / RETURN / ENTER. 	5

E> ld
 NOTE: The core is in kernel mode.

 The NEWLINE is required because we are running in “cooked” mode. Had the emulator been in 5

“raw” mode, pressing the letter alone would be sufficient. However, in “raw” mode, echoing of
characters is not done, so we would not see the “q”.

Emulator Reference Manual / Porter	 	 Page of 	43 147

Chapter 3: Commands	

 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 400104000
Enter the size of the access (1,2,4, or 8): 8
Your Input Address = 0x400104000 [MEMORY-MAPPED I/O]
Translated Address = 0x400104000 [MEMORY-MAPPED I/O]
q
0x400104000: 0x0000000000000071 (decimal: 113)
E>

We see that the command reads the value of 0x71 from the device. We can use the
“hex” command to see that this value is 113 in decimal and “q” in ASCII, as expected.	

E> hex
Enter a value in hex: 71
 hex: 0x0000000000000071
 decimal: 113
 ascii: ".......q"
 real: 5.582941798006085949195227359e-322
E>

st

This command is used to write 1, 2, 4, or 8 bytes to the memory system. The
command prompts for the address, the number of bytes to write, and the value to be
written.	

See also the “ld” command, which reads instead of writes.	

Address translation is performed (using the TLB registers as described in the Blitz
Instruction Set Architecture).	

E> st
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 2
 Input Address = 0xCD74 [PHYSICAL]
Translated Address = 0xCD74 [PHYSICAL]
BEFORE: 0x00000cd74: 0x0028 (decimal: 40)
Enter new value: 1234
AFTER: 0x00000cd74: 0x1234 (decimal: 4660)
E>

Emulator Reference Manual / Porter	 	 Page of 	44 147

Chapter 3: Commands	

Like the “ld” command, this command will perform address translation and, if an
exception would occur, will abort the operation and report the exception.	

This command can be used to write to memory-mapped I/O devices. In the next
example, we write to the location used by the “Simple Serial Device” to write a
single character to the output. The command confirms that this is the user’s intent,
then asks for the value to be written.	

E> st
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 400104000
Enter the size of the access (1,2,4, or 8): 8
 Input Address = 0x400104000 [MEMORY-MAPPED I/O]
Translated Address = 0x400104000 [MEMORY-MAPPED I/O]
***** This command appears to access a memory-mapped I/O device.
Do you want to proceed? y
Enter new value: 6b
kE>

In this example, we wrote the value 0x6b (decimal 107) which is the ASCII code for
the letter “k”. On the highlighted line, you can see that the character is inserted into
the output stream when the operation is performed.	

Note that when the address to be written is within a memory-mapped device’s
region, this command will not print the before or after values. Why? Because it
would require LOADs from the device. For memory-mapped I/O devices, a simple
LOAD may elicit some complex operation.	

dm dumpmem

This command asks for a starting address. It then displays 30 doublewords of
physical memory starting at that address.	

The columns of the output are:	

address	 offset	 value in hex	 value in decimal	 ASCII interpretation	

Emulator Reference Manual / Porter	 	 Page of 	45 147

Chapter 3: Commands	

For example:	

E> dm
Enter the starting address in hex: 40
000000040: 00 0x0000000100000001 4294967297
000000048: 08 0x2000000000000000 2305843009213693952
000000050: 10 0x0000000100000001 4294967297
000000058: 18 0x3000000000000000 3458764513820540928 0.......
000000060: 20 0x0000000100000001 4294967297
000000068: 28 0x3100000000000000 3530822107858468864 1.......
000000070: 30 0x0000000600000006 25769803782
000000078: 38 0x46414c53450a0000 5062411376665427968 FALSE...
000000080: 40 0x0000000500000005 21474836485
000000088: 48 0x545255450a000000 6076012602285096960 TRUE....
000000090: 50 0x0000000500000005 21474836485
000000098: 58 0x46414c5345000000 5062411376664772608 FALSE...
0000000a0: 60 0x0000000400000004 17179869188
0000000a8: 68 0x5452554500000000 6076012602117324800 TRUE....
0000000b0: 70 0x0000000200000002 8589934594
0000000b8: 78 0x3078000000000000 3492541511025819648 0x......
0000000c0: 80 0x0000001400000014 85899345940
0000000c8: 88 0x2d39323233333732 3258690996568012594 -9223372
0000000d0: 90 0x3033363835343737 3473179352671467319 03685477
0000000d8: 98 0x3538303800000000 3834868099782279168 5808....
0000000e0: a0 0x0000000100000001 4294967297
0000000e8: a8 0x0a00000000000000 720575940379279360
0000000f0: b0 0x0000000b0000000b 47244640267
0000000f8: b8 0x2020202020206465 2314885530818471013 de
000000100: c0 0x633a200000000000 7150062542776172544 c:
000000108: c8 0x0000000200000002 8589934594
000000110: d0 0x2020000000000000 2314850208468434944
000000118: d8 0x0000001a0000001a 111669149722
000000120: e0 0x4144445245535320 4702959031022736160 ADDRESS
000000128: e8 0x2020202020202020 2314885530818453536
E>

This command can print	

	 • Private RAM of the currently selected core	
	 • Shared RAM	
	 • Bootstrap ROM	
	 • Secure Storage	

The addresses apply to the currently selected core and address translation is
performed. If an exception would occur, this command will abort.	

In some cases, the debugger can identify items of memory that appear to be objects.
When possible, it identifies the object’s class, as in this example:	

Emulator Reference Manual / Porter	 	 Page of 	46 147

Chapter 3: Commands	

E> dm
Enter the starting address in hex: 0x0000000000018f50
----- This appears to be the beginning of a Person object at 0x000018f50 -----
000018f50: 00 0x000000000000ce00 52736
000018f58: 08 0x000000000000006f 111 o
000018f60: 10 0x00000000000000de 222
000018f68: 18 0x0000000000000000 0
000018f70: 20 0x0000000000000000 0
...

This happens when the first work happens to be the address of a Dispatch Table. 	6

In some cases, this command can identify a pointer to an object and it adds the class
name as demonstrated in the first highlighting below.	

In other cases, the debugger can identify a likely pointer, in which case it prints out
the first 3 doublewords pointed to.	

E> dm
Enter the starting address in hex: 00fffffa8
00fffffa8: 00 0x0000000000000000 0
00fffffb0: 08 0x0000000000018f50 102224 P
 ---> to a Person object at 0x000018f50
00fffffb8: 10 0x000000000000cb38 52024 8
 ---> 220011f817002c47 0300001422000740 0300001701000877 ...
00fffffc0: 18 0x0000000000000018 24
 ---> 5f00000000000000 0000000500000005 2020203078000000 ...
00fffffc8: 20 0x0000000000000004 4
00fffffd0: 28 0x0000000000000005 5
...

Actually, the emulator prints everything on one line, which is hard to read in this
document, but looks better in a wider window:	

E> dm
Enter the starting address in hex: 00fffffa8
00fffffa8: 00 0x0000000000000000 0
00fffffb0: 08 0x0000000000018f50 102224 P ---> to a Person object at 0x000018f50
00fffffb8: 10 0x000000000000cb38 52024 8 ---> 220011f817002c47 0300001422000740 0300001701000877 ...
00fffffc0: 18 0x0000000000000018 24 ---> 5f00000000000000 0000000500000005 2020203078000000 ...
00fffffc8: 20 0x0000000000000004 4
00fffffd0: 28 0x0000000000000005 5
...

 Of course, this could be coincidence. The debugger reads several words of memory, looking at the 6

dispatch table and the class descriptor. It looks for the “magic number” that each class descriptor
begins with and, it is matches, then it retrieves the class name.

Emulator Reference Manual / Porter	 	 Page of 	47 147

Chapter 3: Commands	

In some cases, the debugger can identify a pointer to a string, in which case it prints
out the string. For example:	7

E> dm
Enter the starting address in hex: FFFFFE0
00fffffe0: 00 0x00000000000028b0 10416 (.
 ---> "Now is the time"
00fffffe8: 08 0x000000000000c8c4 51396
...

dm2 dumpmem2

This command can be used to display the contents of memory.	

This command prompts for the starting address and the number of bytes. It prints
the bytes. Each row prints 16 bytes in hex, followed by an ASCII rendition of the 16
bytes, using a period “.” for each byte that is not a printable ASCII character.	

For example:	

E> dm2
Enter the starting (physical) memory address in hex: 4000
Enter the number of bytes in hex (or 0 to abort): 100
PRIVATE MEMORY:
000004000: 0100 0822 0300 0027 1E00 18F1 0300 0072 ..."...'.......r
000004010: 1E00 48F3 1914 A60E 1E00 50F1 0100 60FF ..H.......P...`.
000004020: 1EFF F8FE 1A00 00E0 22FF FEF8 01FF C8FF ".......
000004030: 2200 31F8 2200 42F0 2200 00F0 2200 00F8 ".1.".B."..."...
000004040: 2200 10F0 2200 10F8 2200 20F0 2200 20F8 "..."...". .". .
000004050: 1E00 38F7 1D00 0477 0300 0071 1E00 40F7 ..8....w...q..@.
000004060: 1D00 0477 0300 0072 1900 2D0E 2200 21F8 ...w...r..-.".!.
000004070: 0400 0007 2200 17F8 0300 0017 01FF FF77 "..........w
000004080: 2200 17F0 1E00 18F7 2200 27F0 1E00 20F7 ".......".'... .
000004090: 1E00 10F6 1200 6760 1E00 20F1 1E00 38F2 g`.. ...8.
0000040a0: 1E00 0028 0011 0088 0044 0810 0100 0811 ...(.....D......
0000040b0: 0001 0121 0300 0016 1E00 20F1 1E00 40F2 ...!...... ...@.
0000040c0: 1E00 0028 0011 0088 0044 0810 0100 0811 ...(.....D......
0000040d0: 0001 0121 0300 0017 1B00 0077 000F 0077 ...!.......w...w
0000040e0: 1F00 0760 1E00 20F7 0100 0177 2200 27F0 ...`..w".'.
0000040f0: 19FF F9C0 0100 38FF 1EFF F8FE 1A00 00E0 8.........
E>

 Recall that the type String is a pointer to an array of bytes. The debugger looks for a pointer to 7

something that looks like it could be an array of reasonable size and that, if so, would only contain
printable ASCII codes.

Emulator Reference Manual / Porter	 	 Page of 	48 147

Chapter 3: Commands	

This command can print	

	 • Private RAM of the currently selected core	
	 • Shared RAM	
	 • Bootstrap ROM	
	 • Secure Storage	

Address translation does not occur. 	

dis

This command displays the contents of memory, interpreting the bytes as machine
instructions.	

This command prompts for a starting address and then disassembles about a page
worth (i.e., 30) of instructions at that address.	

For each 32 bit word, it prints	

	 • The address	
	 • The word in hex	
	 • The machine instruction (opcode and arguments)	
	 • Additional information as a comment	

For example:	

E> dis
Enter the beginning address (in hex): 4000
 000004000: 01000822 addi r2,r2,8
 000004004: 03000027 mov r7,r2 # synthetic for ORI _,_,0
 000004008: 1E0018F1 load.d r1,24(sp) # offset = 0x18
 00000400C: 03000072 mov r2,r7 # synthetic for ORI _,_,0
 000004010: 1E0048F3 load.d r3,72(sp) # offset = 0x48
 000004014: 1914A60E call memoryCopy # PC + 0x14A60
 RETURN (line 798)
 _Label_489:
 000004018: 1E0050F1 load.d r1,80(sp) # offset = 0x50
 00000401C: 010060FF addi sp,sp,96 # hex = 0x60
 000004020: 1EFFF8FE load.d lr,-8(sp) # offset = 0xFFF8

Emulator Reference Manual / Porter	 	 Page of 	49 147

Chapter 3: Commands	

 000004024: 1A0000E0 ret # synthetic for JALR r0,0(lr)
 Function "overwriteString" [System.c]
 _P_System_overwriteString:
 000004028: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
 00000402C: 01FFC8FF addi sp,sp,-56 # hex = 0xFFC8
 000004030: 220031F8 store.d 56(sp),r1 # offset = 0x38
 000004034: 220042F0 store.d 64(sp),r2 # offset = 0x40
 000004038: 220000F0 store.d 0(sp),r0
 00000403C: 220000F8 store.d 8(sp),r0
 000004040: 220010F0 store.d 16(sp),r0 # offset = 0x10
 000004044: 220010F8 store.d 24(sp),r0 # offset = 0x18
 000004048: 220020F0 store.d 32(sp),r0 # offset = 0x20
 00000404C: 220020F8 store.d 40(sp),r0 # offset = 0x28
 CALL (line 821)
 000004050: 1E0038F7 load.d r7,56(sp) # offset = 0x38
 000004054: 1D000477 load.w r7,4(r7)
 000004058: 03000071 mov r1,r7 # synthetic for ORI _,_,0
 00000405C: 1E0040F7 load.d r7,64(sp) # offset = 0x40
 000004060: 1D000477 load.w r7,4(r7)
 000004064: 03000072 mov r2,r7 # synthetic for ORI _,_,0
 000004068: 19002D0E call _P_System_min # PC + 0x2D0
 00000406C: 220021F8 store.d 40(sp),r1 # offset = 0x28
 FOR_INIT (line 822)
 000004070: 04000007 movi r7,0 # synthetic for XORI r7,r0,0x0
 000004074: 220017F8 store.d 24(sp),r7 # offset = 0x18
E>

As this example shows, the debugger will add labels, source code line numbers, and
statement types when it can.	

In some cases, such as for CALL and BRANCH instructions, the debugger will display
the branch target symbolically. This is occurs in the highlighted line above.	

If the section of memory being displayed does not contain instructions, then this
command just prints out a series of 32 bit words. Occasionally, the bits may happens
to constitute a valid machine instructions and you’ll see output like this:	

E> dis
Enter the beginning address (in hex): 0000000F0
 _StringConst_123:
 0000000F0: 0000000B # decimal = 11, ascii = "...."
 0000000F4: 0000000B # decimal = 11, ascii = "...."
 0000000F8: 20202020 store.h 8224(r2),r0 # offset = 0x2020
 0000000FC: 20206465 store.h 8293(r6),r4 # offset = 0x2065
 000000100: 633A2000 # decimal = 1664753664, ascii = "c: ."
 000000104: 00000000
 _StringConst_122:
 000000108: 00000002 # decimal = 2, ascii = "...."
 00000010C: 00000002 # decimal = 2, ascii = "...."
 000000110: 20200000 store.h 8192(r0),r0 # offset = 0x2000
...

Emulator Reference Manual / Porter	 	 Page of 	50 147

Chapter 3: Commands	

This command will recognize some machine instruction patterns and print them,
not as the full machine instruction, but as a synthetic instruction that would have
generated them.	

For example:	

These instructions…	 Will be printed as…	
ori RegD,r0,immed movi RegD,immed
jalr lr,0(Reg1) callr Reg1
jalr r0,0(lr) ret
jal r0,xxxx jump xxxx
jal lr,xxxx call xxxx
ori RegD,Reg1,0 mov RegD,Reg1
xori RegD,r0,immed movi RegD,immed
sub RegD,r0,Reg2 neg RegD,Reg2
xori RegD,Reg1,-1 bitnot RegD,Reg1
testeq RegD,r0,Reg2 lognot Regd,Reg2
addi r0,r0,0 nop

d

This command is just like the “dis” command excepts that it does not ask for a
starting address. Instead, this command just starts where the last “dis” or “d”
command left off.	

This command makes it easy to disassemble a lengthy block of code by just typing
the “d” command repeatedly.	

stack

This command displays the calling stack, which shows which functions are in
execution. In the following example, the program has been stopped with a “debug”
statement.	

Emulator Reference Manual / Porter	 	 Page of 	51 147

Chapter 3: Commands	

E> stack
 Function/Method Execution at... File
 ========================= ==================== =======================
 foo2 ASSIGN line 40 MyProgram.c
 foo1 CALL line 31 MyProgram.c
 main CALL line 25 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

-------------------- foo2 --------------------
Execution is stopped at ASSIGN on line 40 in function "foo2" [MyProgram.c]
 Code Address: 00000cc4c
 Frame: 00fffff80 - 00fffffc0, size = 0x40 (decimal 64)
 arg offset 64 0x0040... 00fffffc0: 0000000000bc6105 myArg: int = 12345605
 offset 40 0x0028... 00fffffa8: 0000000000000457 myVarA: int = 1111
 offset 48 0x0030... 00fffffb0: fffffffffffc747d myVarB: int = -232323

The command first shows the entire stack. The first highlighting shows the functions
of interest and we can immediately see that execution is stoped in function foo2.	

The second highlighting shows some information about the currently executing
function: the address in memory of the machine instruction where execution is
stopped and the values of the arguments and local variables to this function.	

The command then prompts for a number, which is the number of frames the user
would like to have printed in detail.	

I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)?

Sometimes, the user will want nothing more, and will hit NEWLINE/ENTER/
RETURN:	

But often the user may want to see more of the stack. In this case, the user might
also be interested in functions foo1 and main, so the user would ask for 2 more
frames.	

I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)? 2

-------------------- foo1 --------------------
Execution is stopped at CALL on line 31 in function "foo1" [MyProgram.c]
 Code Address: 00000cb9c
 Frame: 00fffffc0 - 00fffffd0, size = 0x10 (decimal 16)
 arg offset 16 0x0010... 00fffffd0: 0000000000bc6105 x: int = 12345605

Emulator Reference Manual / Porter	 	 Page of 	52 147

Chapter 3: Commands	

-------------------- main --------------------
Execution is stopped at CALL on line 25 in function "main" [MyProgram.c]
 Code Address: 00000cb64
 Frame: 00fffffd0 - 00ffffff0, size = 0x20 (decimal 32)
 offset 8 0x0008... 00fffffd8: 0000000000bc6100 i: int = 12345600
 offset 16 0x0010... 00fffffe0: 0000000000000005 j: int = 5
I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)?
E>

From this, we can see where the functions are called and the values of the
parameters and local variables.	

In some programs, the stack can be deeper. Rather than counting how many frames
to display, the user can type a ridiculously big number like 99 to just display the
whole stack. This will include the frames for functions “_kplEntry” and “_entry”,
which are called as part of the start-up of any KPL program, but these can be
ignored.	

This command works roughly as follows:	

The address of the next instruction to execute is in PC, the program counter register.
From this, the debugging information which can be obtained from the executable
file, can be used to determine which function this address is within. The debugging
information will also contain information about the stack frame. The debugger then
looks at the stack frame to find the return address for this function. Then the
debugger determines which function this new address is within. Repeating the
process, the debugger can then dissect the each frame on the stack.	

This system works well, except in the case of a leaf function. A leaf function does not
call any other functions and, as such, does not need to save the Link Register (lr) on
the stack. This optimization can save a few instructions, but can also confuse this
command. When it detects a leaf function, the stack command can use the lr
register. The command will prompt before proceeding.	

The other case when this system fails is when the execution is not within a known
function. This can occur for two reasons.	

First, the program has taken a bad branch and is not really executing any legal code.	

To deal with this, the user can use the “r” (“regs”) command to get the current
instruction time. Then, the user can restart the program and use the “stepn”

Emulator Reference Manual / Porter	 	 Page of 	53 147

Chapter 3: Commands	

command to get to a point in time shortly before this. Now execution is stopped
slightly before the bad jump is to be taken. The “stack” command should work
properly.	

Second, the program may be executing legitimate code, but the debugging
information is missing. The KPL compiler is diligent about including debugging
information for all functions and methods. This debugging information is
transmitted in the “.s” assembly file, using the following assembler directives:	

	 .function	
	 .endfunction	
	 .stmt	
	 .local	

However, there may be functions coded directly in assembler for which these
directives have not been added. More likely the problem is that the information in
the directives is incorrect. In particular, a mistake in the “framesize=…” parameter
is easy to make and will always confuse the debugger.	

stack2

This command is essentially the same as the “stack” command, except that it
prompts for the code address and the stack top pointer.	

This command is might be useful in a multi-threaded application.	

sm stackmem

This command prints the top few bytes of the stack, as a series of 32 bit words. For
example:	

E> sm
 ADDRESS OFFSET
 00ffffed0 0000: 00000000 <--- TOP
 00ffffed4 0004: 0000cc38

Emulator Reference Manual / Porter	 	 Page of 	54 147

Chapter 3: Commands	

 00ffffed8 0008: 00000000
 00ffffedc 000c: 00006a0c
 00ffffee0 0010: 00000000
 00ffffee4 0014: 00000228
 00ffffee8 0018: 00000000
 00ffffeec 001c: 000064e4
 00ffffef0 0020: 00000000
 00ffffef4 0024: 0000cc38
 00ffffef8 0028: 00000000
 00ffffefc 002c: 00050767
 00fffff00 0030: 00000000
 00fffff04 0034: 00000000
 00fffff08 0038: 00000000
 00fffff0c 003c: 00002988
E>

globals

This command uses the debugging information and displays the values of all global
variables.	

For example:	

E> globals
From package "MyProgram.c"...
 line 91 000002880: 000000000001e240 myGlob: int = 123456
 line 93 000002888: 48 myGlobChar: byte = 'H'
 (decimal 72)
 line 92 0000029c8: 00000000000028d0 myGlobVar2: String =
 "this is some text"
From package "runtime.s"...
From package "HostInterface.c"...
 line 84 0000023c8: 00000000000023e0 stdin: ptr —>
 00000000 00000000 00000000
 00000001 00000000 00000002...
 line 85 0000023d0: 00000000000023e8 stdout: ptr -->
 00000000 00000001 00000000
 00000002 00000000 00018e88...
 line 86 0000023d8: 00000000000023f0 stderr: ptr -->
 00000000 00000002 00000000
 00018e88 00000000 00018e40...
 line 87 0000023e0: 0000000000000000 stdinFILE: struct
 line 88 0000023e8: 0000000000000001 stdoutFILE: struct
 line 89 0000023f0: 0000000000000002 stderrFILE: struct
 line 61 0000023f8: 0000000000018e88 print: ptr -->
 1000101c 01000811 1dfffc12
 14400108 22401188 14400108...

Emulator Reference Manual / Porter	 	 Page of 	55 147

Chapter 3: Commands	

 line 62 000002400: 0000000000018e40 readString: ptr -->
 1d000012 1200020c 21000014
 1a0000e0 01000811 14400108...
 line 90 0000029c0: 0000000000000000 errno: int = 0
From package "System.c"...
 line 40 000000008: 00 alreadyInAlloc: bool = false
 line 37 000018f48: 05f5e10005f5e100 TheHeapArray: array
 (currentSize = 100000000,
 maxSize = 100000000)
 line 38 005f77050: 0000000000018f50 heapRegionStart: ptr -->
 00000000 00000000 00000000
 00000000 00000000 00000000...
 line 38 005f77058: 0000000000018f50 heapNextPtr: ptr -->
 00000000 00000000 00000000
 00000000 00000000 00000000...
 line 38 005f77060: 0000000005f77050 heapRegionBeyond: ptr -->
 00000000 00018f50 00000000
 00018f50 00000000 05f77050...
 line 39 005f77068: 0000000000000000 heapTotalBytesFreed: int = 0
 line 39 005f77070: 0000000000000000 heapTotalAllocation: int = 0
 line 49 005f77078: 0000000000007230 mainThreadData: object
 line 50 005f770b8: 0000000005f770c8 threadPrefs_0: struct
 line 51 005f770c8: 0000000000000000 printPrefs_0: struct
From package "MiscLib.c"...
 line 21 000001c10: 0000000000000000 InputBuffer: array
 (currentSize = 0,
 maxSize = 0)
From package "PrintPackage.c"...
E>

This commands goes through each package and prints the global variables from that
package. Recall that a “global variable” is one that occurs outside of any function or
method and thus exists throughout the execution of the program.	

The first package (“MyProgram.c”) is repeated below:	

From package "MyProgram.c"...
 line 91 000002880: 000000000001e240 myGlob: int = 123456
 line 93 000002888: 48 myGlobChar: byte = 'H'
 (decimal 72)
 line 92 0000029c8: 00000000000028d0 myGlobVar2: String =
 "this is some text"

The command shows the line number on which each variable was declared, as well
as the name, type, and current value of the variable. Other information includes the
address at which the variable is stored as well as the value in hex.	

Emulator Reference Manual / Porter	 	 Page of 	56 147

Chapter 3: Commands	

trans

The Blitz core has a Memory Management Unit (MMU) that is active on every
FETCH, LOAD, or STORE. Each access to main memory or to a memory-mapped I/O
device is either a FETCH, LOAD, or STORE operation.	

The MMU takes a “program-generated address” and maps it into a “physical
address”. A program-generated address can be any 36 bit number. A physical
address is only 35 bits. In other words, program-generated addresses range over	

	 0x0_0000_0000 … 0xF_FFFF_FFFF	 (64 GiBytes)	

while physical addresses range over	

	 0x0_0000_0000 … 0x7_FFFF_FFFF	 (32 GiBytes)	

Program-generated addresses in the range	

	 0x8_0000_0000 … 0xF_FFFF_FFFF	 (32 GiBytes)	

are within a “virtual address space”. Virtual address are mapped by the MMU using
the TLB registers into a physical address.	

The MMU will also check for errors. For example, if the core is in User Mode, only
virtual addresses may be used. Also an attempt to STORE into a read-only page
would be illegal. If the MMU detects any problems, an exception will be signaled,
preventing the illegal access from occurring.	

This command is used to see how an address would be translated by the Memory
Management Unit (MMU).	

Regardless of the outcome, the state of the core will not be altered. No actual access
to the physical memory or memory-mapped I/O device will occur. Even if an
exception is indicated, no exception is actually signaled.	

In our first example, the core is in Kernel Mode and we are asking about fetching an
instruction from a valid physical memory address.	

Emulator Reference Manual / Porter	 	 Page of 	57 147

Chapter 3: Commands	

This is a valid request and would not result in any exception. This result is
highlighted below:	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 2134
You entered: Address = 0x2134 [PHYSICAL]
Want to perform fetch, load, or store? f
Output from MMU...
 Status=OKAY Address = 0x2134 [PHYSICAL]
This address lies within...
 Private RAM,
 Shared RAM, or
 Boot ROM
E>

In the next example, the core is in User Mode. An attempt to fetch an instruction
from the same address would cause an exception:	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.
 NOTE: The core is in user mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 2134
You entered: Address = 0x2134 [PHYSICAL]
Want to perform fetch, load, or store? f
 ----- This will cause a TLB_PRIVILEGE EXCEPTION
E>

In the next example, the core is in User Mode and the address in a virtual address.
We are asking what would happen if we tried to LOAD a doubleword from memory.	

There is a valid mapping in one of the TLB registers, so this access would succeed.	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.

Emulator Reference Manual / Porter	 	 Page of 	58 147

Chapter 3: Commands	

 NOTE: The core is in user mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x1200.
Enter any address in hex: 8000140c8
You entered: Address = 0x8000140C8 [VIRTUAL PAGE = 0x000005 OFFSET = 0x00c8]
Want to perform fetch, load, or store? l
Enter the size of the access (1,2,4, or 8): 8
Output from MMU...
 Status=OKAY Address = 0x1C0C8 [PHYSICAL]
E>

The command informs us that we are asking about the doubleword at offset 0x00c8
within page number 5. The MMU will translate this address into physical address
0x1C0C8.	

The MMU will turn a virtual address into a physical address, but will not verify that
there is actually anything installed at that address. However, the emulator will give 8

us a warning with any attempt to access memory in an area where no installed
memory exists. This is illustrated next:	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x1200.
Enter any address in hex: 300000000
You entered: Address = 0x300000000 [PHYSICAL]
Want to perform fetch, load, or store? l
Enter the size of the access (1,2,4, or 8): 8

***** Probable Error in the Blitz Code: Within PerformVirtualMapping,
 the physical address is uninstalled/invalid *****
Output from MMU...
 Status=OKAY Address = 0x300000000 [PHYSICAL]
E>

This same warning will appear if an executing program attempts to FETCH, LOAD, or
STORE using a address that is within the range of installed physical memory or
memory-mapped I/O devices.	

 It is the responsibility of the OS kernel to use only properly installed physical memory to back 8

virtual memory pages.

Emulator Reference Manual / Porter	 	 Page of 	59 147

Chapter 3: Commands	

addr

Recall that a virtual address is a 35 bit number consisting of a 21 bit virtual page
number following by a 14 bit byte offset within the page.	

Given an address, breaking it into the 21 bit page number and 14 bit offset is tedious
and error prone. This command makes it easy.	

This command asks for an address and then does the work. For example:	

E> addr
Enter an address in hex: 800301234
Address = 0x800301234 [VIRTUAL PAGE = 0x0000c0 OFFSET = 0x1234]
E>

Here’s another example, in which the address is not a virtual address:	

E> addr
Enter an address in hex: 1234
Address = 0x1234 [PHYSICAL]
E>

addr2

Combining a page number and offset into an address is error prone. This command
makes it easy.	

This command asks for a page number and offset and then combines them. For
example:	

E> addr2
Enter the 21 bit PAGE NUMBER: 0x0000c0
Enter the 14 bit OFFSET: 0x1234
AS PHYSICAL:
 Address = 0x301234 [PHYSICAL]
AS VIRTUAL:
 Address = 0x800301234 [VIRTUAL PAGE = 0x0000c0 OFFSET = 0x1234]
E>

Emulator Reference Manual / Porter	 	 Page of 	60 147

Chapter 3: Commands	

read

In Blitz, all I/O devices are “memory-mapped”, which means they are accessed with
LOAD and STORE machine instructions.	

This command asks for an address and then reads from that location as if a “load.d”
instruction had been executed. It will then display the value returned by the I/O
device.	

The exact effect depends on the I/O device involved.	

For example, with the Simple Serial Device, a LOAD from address 0x400104000
will cause the emulator to wait for the user to enter a single character. In this
example, the user enters the letter “k”, which is ASCII 0x6b.	

E> read
Enter the (physical) address in hex: 400104000
Reading from 0x400104000...
k
Value = 0x000000000000006B (decimal 107)
E>

write

In Blitz, all I/O devices are “memory-mapped”, which means they are accessed with
LOAD and STORE machine instructions.	

This command asks for an address and then writes to that location as if a “store.d”
instruction had been executed.	

The exact effect depends on the I/O device involved.	

For example, with the Simple Serial Device, a STORE to address 0x400104000 will
cause the emulator to display a single character:	

Emulator Reference Manual / Porter	 	 Page of 	61 147

Chapter 3: Commands	

E> write
Enter the (physical) address in hex: 400104000
Enter the value to write, in hex: 6a
About to write value 0x000000000000006A to address 0x400104000...
j
Done.
E>

Note that ASCII code of 0x6a is the character “j”. The command ends by printing
“\nDone.\n” which explains why the “j” is on a line by itself.	

cores

The emulator is capable of emulating a multi-core processor.	

The number of cores is determined by the file “emulationParms” which is read
when the Blitz emulator starts up, or when the reset command is used.	

In a multi-core systems, the cores are arranged in an array. This array can be 1-
dimensional, in which case the cores are placed next to each other in a row and
numbered from 0 to M-1, where M is the number of cores.	

The cores can also be arranged in a 2-dimensional array. For example, assume the
number of rows is N and the number of columns is M. Then there are a total of M × N
cores.	

Finally, the cores can be arranged in a 3-dimensional array. For example, assume the
number of rows is N, the number of columns is M, and the number of planes is P.
Then there are a total of M × N × P cores.	

The intent of the array arrangement is to accommodate and model the actual
physical placement on a silicon chip. While routing is not so much an issue with a
dozen or so cores, in the future we can envision 100’s or 1000’s of cores on a single
chip, at which time placement becomes important. At present, most chips are flat,
but we are beginning to see the stacking of circuits, so a 3-D arrangement may be
useful in the future.	

Emulator Reference Manual / Porter	 	 Page of 	62 147

Chapter 3: Commands	

Each core has a “core number”. Let R be the total number of cores, i.e., M × N × P.
Each core is assigned a number in the range 0 … R-1. Core 0 is said to be the
“primary core”.	

The number of rows, columns, and planes is given in the file emulatorParms. For
example, the file might contain these lines.	

 CORES_NUMBER_OF_COLS 0x0000000000000002 (decimal: 2)
 CORES_NUMBER_OF_ROWS 0x0000000000000003 (decimal: 3)
 CORES_NUMBER_OF_PLANES 0x0000000000000004 (decimal: 4)

Using the “sim” command, you can see these values. To alter them, you must edit the
emulatorParms file and restart the emulator.	

In this example, there are 24 cores (i.e., 2 × 3 × 4), numbered 0, 1, 2, … 23. At any one
time there is a “currently selected” core.	

In addition to the core number, each core has an X-Y-Z coordinate as well. In this
example X ranges over 0 … 1, Y ranges over 0 … 2, and Z ranges over 0 … 3. Cores can
communicate with their neighbors. We refer to directions using this notation :	9

	 Direction	 Neighbor’s X-Y-Z Coordinate	
	 west / left	 X-1	
	 east / right	 X+1	
	 north	 Y-1	
	 south	 Y+1	
	 up	 Z-1	
	 down	 Z+1	

The “cores” command prints out a line for each core, as shown next.	

E> cores
 core x,y,z status instructions cycles PC interrupts mode
 ==== ========== ======= ============ ============ =========== ========== ======
Current --> 0 [0, 0, 0] RUNNING 5887 17661 0x00000cd08 kernel <-- Current
 1 [1, 0, 0] stopped 0 0 0x400000000 disabled kernel
 2 [0, 1, 0] stopped 0 0 0x400000000 disabled kernel

 If the cores are linearly arranged, then core 0 (i.e., the core with coordinates X=0, Y=0, Z=0) is the 9

leftmost core and core M (i.e., at X=M-1, Y=0, Z=0) is the rightmost. If the cores are arranged in a
2D rectangle, then core 0 (i.e., at X=0, Y=0, Z=0) is the most northwestern core and the core at
X=M-1, Y=N-1, Z=0 is the most southeastern core. We reserve the use of “up” and “down” for 3D
arrangements, and avoid these terms for 2D arrangements, since these terms are used for the third
dimension. Using “up” and “down” for “north” and “south” in 2D arrangements is unambiguous,
but it could be confusing.

Emulator Reference Manual / Porter	 	 Page of 	63 147

Chapter 3: Commands	

 3 [1, 1, 0] stopped 0 0 0x400000000 disabled kernel
 4 [0, 2, 0] stopped 0 0 0x400000000 disabled kernel
 5 [1, 2, 0] stopped 0 0 0x400000000 disabled kernel
 6 [0, 0, 1] stopped 0 0 0x400000000 disabled kernel
 7 [1, 0, 1] stopped 0 0 0x400000000 disabled kernel
 8 [0, 1, 1] stopped 0 0 0x400000000 disabled kernel
 9 [1, 1, 1] stopped 0 0 0x400000000 disabled kernel
 10 [0, 2, 1] stopped 0 0 0x400000000 disabled kernel
 11 [1, 2, 1] stopped 0 0 0x400000000 disabled kernel
 12 [0, 0, 2] stopped 0 0 0x400000000 disabled kernel
 13 [1, 0, 2] stopped 0 0 0x400000000 disabled kernel
 14 [0, 1, 2] stopped 0 0 0x400000000 disabled kernel
 15 [1, 1, 2] stopped 0 0 0x400000000 disabled kernel
 16 [0, 2, 2] stopped 0 0 0x400000000 disabled kernel
 17 [1, 2, 2] stopped 0 0 0x400000000 disabled kernel
 18 [0, 0, 3] stopped 0 0 0x400000000 disabled kernel
 19 [1, 0, 3] stopped 0 0 0x400000000 disabled kernel
 20 [0, 1, 3] stopped 0 0 0x400000000 disabled kernel
 21 [1, 1, 3] stopped 0 0 0x400000000 disabled kernel
 22 [0, 2, 3] stopped 0 0 0x400000000 disabled kernel
 23 [1, 2, 3] stopped 0 0 0x400000000 disabled kernel
The number of runnable cores is: 1
The current core is: 0
E>

We see the core number, followed by the X-Y-Z coordinates of the core. We also see
how many instructions have executed on each core. We also see the Program
Counter (PC) and the status of the InterruptsEnabled and KernelMode bits in the
CSR_STATUS register for each core.	

The column marked “status” indicates whether the core is running or not. If a
SLEEP1 instruction has been executed, the status will be “sleep-1” and if a SLEEP2
instruction has been executed, the status will be “sleep-2”. Otherwise, the status will
be “RUNNING” or “stopped”.	

We also see which core is the currently selected core.	

sel

This command gives the user the opportunity to switch to a different core. Hitting
NEWLINE / ENTER / RETURN is the usual response, leaving the currently selected
core unchanged. For example:	

E> sel
The current core is: 0

Emulator Reference Manual / Porter	 	 Page of 	64 147

Chapter 3: Commands	

Enter the number of the core to make current (0..23) or ENTER for no change: 3
The current core is now: 3
E> cores
 core x,y,z status instructions cycles PC interrupts mode
 ==== ========== ======= ============ ============ =========== ========== ======
 0 [0, 0, 0] RUNNING 5887 17661 0x00000cd08 kernel
 1 [1, 0, 0] stopped 0 0 0x400000000 disabled kernel
 2 [0, 1, 0] stopped 0 0 0x400000000 disabled kernel
Current --> 3 [1, 1, 0] stopped 0 0 0x400000000 disabled kernel <-- Current
 4 [0, 2, 0] stopped 0 0 0x400000000 disabled kernel
 5 [1, 2, 0] stopped 0 0 0x400000000 disabled kernel
 6 [0, 0, 1] stopped 0 0 0x400000000 disabled kernel
 7 [1, 0, 1] stopped 0 0 0x400000000 disabled kernel
 8 [0, 1, 1] stopped 0 0 0x400000000 disabled kernel
 9 [1, 1, 1] stopped 0 0 0x400000000 disabled kernel
 10 [0, 2, 1] stopped 0 0 0x400000000 disabled kernel
 11 [1, 2, 1] stopped 0 0 0x400000000 disabled kernel
 12 [0, 0, 2] stopped 0 0 0x400000000 disabled kernel
 13 [1, 0, 2] stopped 0 0 0x400000000 disabled kernel
 14 [0, 1, 2] stopped 0 0 0x400000000 disabled kernel
 15 [1, 1, 2] stopped 0 0 0x400000000 disabled kernel
 16 [0, 2, 2] stopped 0 0 0x400000000 disabled kernel
 17 [1, 2, 2] stopped 0 0 0x400000000 disabled kernel
 18 [0, 0, 3] stopped 0 0 0x400000000 disabled kernel
 19 [1, 0, 3] stopped 0 0 0x400000000 disabled kernel
 20 [0, 1, 3] stopped 0 0 0x400000000 disabled kernel
 21 [1, 1, 3] stopped 0 0 0x400000000 disabled kernel
 22 [0, 2, 3] stopped 0 0 0x400000000 disabled kernel
 23 [1, 2, 3] stopped 0 0 0x400000000 disabled kernel
The number of runnable cores is: 1
The current core is: 3
E>

<\n>

A null command — that is, hitting ENTER/RETURN without anything else — will
result in an informative display. For example:	

E> << ENTER >>
Number of running cores: 1
Currently selected: Core_3
Instruction executed so far: Core_3 = 0
 total = 5887
CURRENT LOCATION OF PC:
 400000000: 0300002F mov sp,r2 # synthetic for ORI _,_,0
E>

sched

When emuatoing a multicore system with more than one runnable core, the
emulator — which is single threaded — will execute a few instructions on the

Emulator Reference Manual / Porter	 	 Page of 	65 147

Chapter 3: Commands	

currently selected core. Then change the selected core to the next core that is
runnable. The emulator will then execute a few instructions on that core. This
process will continue, with each core getting a “timeslice”, during which it executes
“a few” instructions. The scheduling is strictly round-robin among the cores with
status RUNNING. Execution will continue this way until either	

	 The user hits control-C	
	 Some core executes a DEBUG instruction	
	 In the case of a limit (as in the stepn command), then limit is reached.	
	 Some other error occurs	

The question is, what does “a few” instructions mean? The answer is determined by
the schedule.	

This command allows the user to change the schedule. The command give the users
choices. For example:	

E> sched
 The "go" command will begin execution. The current core will execute "schedule[0]"
 instructions. Then the next core will execute "schedule[1]" instructions. This
 will continue with each core getting a timeslice. After the last entry in the
 "schedule" array is used, we loop back to "schedule[0]".
HERE IS THE CURRENT TIMESLICE SCHEDULE:
 schedule [0] = 329
 schedule [1] = 248
 schedule [2] = 149
 schedule [3] = 195
 schedule [4] = 260
 schedule [5] = 332
 schedule [6] = 147
 schedule [7] = 349
 schedule [8] = 431
 schedule [9] = 299
 schedule [10] = 469
 schedule [11] = 415
 schedule [12] = 128
 schedule [13] = 155
 schedule [14] = 50
 schedule [15] = 440
 schedule [16] = 505
Please choose by number...
 1 - Default schedule
 2 - Perfect interleaving 1-1-1-1...
 3 - Generate a new random schedule
 4 - Generate a new schedule where each timeslice is equal
Select a new schedule or ENTER for no change: 2
HERE IS THE NEW TIMESLICE SCHEDULE:
 schedule [0] = 1
 schedule [1] = 1
 schedule [2] = 1
 schedule [3] = 1

Emulator Reference Manual / Porter	 	 Page of 	66 147

Chapter 3: Commands	

 schedule [4] = 1
 schedule [5] = 1
 schedule [6] = 1
 schedule [7] = 1
 schedule [8] = 1
 schedule [9] = 1
 schedule [10] = 1
 schedule [11] = 1
 schedule [12] = 1
 schedule [13] = 1
 schedule [14] = 1
 schedule [15] = 1
 schedule [16] = 1
E>

In the above example, the user has selected option 2, which is “Perfect Interleaving”.
This means that each core will execute one instruction. Then the emulator will move
to the next core. The cores will effectively operate in lockstep, proceeding at exactly
the same speed.	

The default time schedule, which was shown first, gives every core between 50 and
505 instructions for its timeslice. There are 17 slots in the schedule with 17 values. 10

The first core to run will get 329 instructions. The second core will get 248
instructions. This will continue. At each timeslice, the emulator will move to the next
core and to the next slot in the schedule. When the end of the schedule (i.e., the
seventeenth entry) has been reached, the emulator will loop back to the first entry.
Assuming that the number of cores is not 17 or a multiple thereof, this will
eventually give every core time slices of every one of the 17 sizes. Thus, in the long
term, all cores will execute the same speed, although there will be local variations.	

This command also allows the user to change the timeslice, giving all processor the
same number of instructions. For example:	

E> sched
 The "go" command will …etc…	
HERE IS THE CURRENT TIMESLICE SCHEDULE:
 schedule [0] = 1
 schedule [1] = 1
 schedule [2] = 1
 …etc… 	
 schedule [14] = 1
 schedule [15] = 1
 schedule [16] = 1
Please choose by number...
 1 - Default schedule
 2 - Perfect interleaving 1-1-1-1...

 These 17 random values were pre-chosen and are fixed; changing them would require 10

recompiling the emulator itself.

Emulator Reference Manual / Porter	 	 Page of 	67 147

Chapter 3: Commands	

 3 - Generate a new random schedule
 4 - Generate a new schedule where each timeslice is equal
Select a new schedule or ENTER for no change: 4
Enter the size of each timeslice: 800
HERE IS THE NEW TIMESLICE SCHEDULE:
 schedule [0] = 800
 schedule [1] = 800
 schedule [2] = 800
 …etc…
 schedule [14] = 800
 schedule [15] = 800
 schedule [16] = 800
E>

In addition, there is an option for mixing things up. For example:	

E> sched
 The "go" command will …etc…
HERE IS THE CURRENT TIMESLICE SCHEDULE:
 schedule [0] = 800
 schedule [1] = 800
 schedule [2] = 800
 …etc…
 schedule [14] = 800
 schedule [15] = 800
 schedule [16] = 800
Please choose by number...
 1 - Default schedule
 2 - Perfect interleaving 1-1-1-1...
 3 - Generate a new random schedule
 4 - Generate a new schedule where each timeslice is equal
Select a new schedule or ENTER for no change: 3
Enter the maximum timeslice size: 100000
HERE IS THE NEW TIMESLICE SCHEDULE:
 schedule [0] = 31730
 schedule [1] = 78841
 schedule [2] = 42613
 schedule [3] = 44304
 schedule [4] = 33170
 schedule [5] = 17710
 schedule [6] = 97158
 schedule [7] = 29561
 schedule [8] = 70934
 schedule [9] = 93100
 schedule [10] = 80279
 schedule [11] = 51817
 schedule [12] = 95336
 schedule [13] = 99098
 schedule [14] = 7827
 schedule [15] = 13513
 schedule [16] = 29268
E>

Emulator Reference Manual / Porter	 	 Page of 	68 147

Chapter 3: Commands	

startall

This command will make all cores runnable. In particular, it will change the status of
any core that is STOPPED to RUNNING. For example:	

E> startall
Core 1 is now RUNNING
Core 2 is now RUNNING
Core 3 is now RUNNING
Core 4 is now RUNNING
Core 5 is now RUNNING
Core 6 is now RUNNING
Core 7 is now RUNNING
Core 8 is now RUNNING
Core 9 is now RUNNING
Core 10 is now RUNNING
Core 11 is now RUNNING
Core 12 is now RUNNING
Core 13 is now RUNNING
Core 14 is now RUNNING
Core 15 is now RUNNING
Core 16 is now RUNNING
Core 17 is now RUNNING
Core 18 is now RUNNING
Core 19 is now RUNNING
Core 20 is now RUNNING
Core 21 is now RUNNING
Core 22 is now RUNNING
Core 23 is now RUNNING
E>

stopall

This command will stop all cores. In particular, it will change the status of any core
that is RUNNING to STOPPED. For example:	

E> stopall
Core 0 is now STOPPED
Core 1 is now STOPPED
Core 2 is now STOPPED
Core 3 is now STOPPED
Core 4 is now STOPPED
Core 5 is now STOPPED

Emulator Reference Manual / Porter	 	 Page of 	69 147

Chapter 3: Commands	

Core 6 is now STOPPED
Core 7 is now STOPPED
Core 8 is now STOPPED
Core 9 is now STOPPED
Core 10 is now STOPPED
Core 11 is now STOPPED
Core 12 is now STOPPED
Core 13 is now STOPPED
Core 14 is now STOPPED
Core 15 is now STOPPED
Core 16 is now STOPPED
Core 17 is now STOPPED
Core 18 is now STOPPED
Core 19 is now STOPPED
Core 20 is now STOPPED
Core 21 is now STOPPED
Core 22 is now STOPPED
Core 23 is now STOPPED
E>

start

This command can be used to change one or more cores from STOPPED to
RUNNING. It prompts the user to select the core by number, as shown in this
example:	

E> start
This command allows you to resume a core's execution by changing its status to RUNNING.
Enter the number of a core (or ENTER to exit): 5
Core 5 is now RUNNING.
Enter the number of a core (or ENTER to exit): 6
Core 6 is now RUNNING.
Enter the number of a core (or ENTER to exit): 9
Core 9 is now RUNNING.
Enter the number of a core (or ENTER to exit): << ENTER >>
E>

To verify the result of this, we can use the cores command to see which cores are
now RUNNING. These are highlighted below. This command does not alter which
core is “currently selected”, as you can see.	

E> cores
 core x,y,z status instructions cycles PC interrupts mode
 ==== ========== ======= ============ ============ =========== ========== ======
 0 [0, 0, 0] stopped 5887 17661 0x00000cd08 kernel
 1 [1, 0, 0] stopped 0 0 0x400000000 disabled kernel
 2 [0, 1, 0] stopped 0 0 0x400000000 disabled kernel
Current --> 3 [1, 1, 0] stopped 0 0 0x400000000 disabled kernel <-- Current
 4 [0, 2, 0] stopped 0 0 0x400000000 disabled kernel

Emulator Reference Manual / Porter	 	 Page of 	70 147

Chapter 3: Commands	

 5 [1, 2, 0] RUNNING 0 0 0x400000000 disabled kernel
 6 [0, 0, 1] RUNNING 0 0 0x400000000 disabled kernel
 7 [1, 0, 1] stopped 0 0 0x400000000 disabled kernel
 8 [0, 1, 1] stopped 0 0 0x400000000 disabled kernel
 9 [1, 1, 1] RUNNING 0 0 0x400000000 disabled kernel
 10 [0, 2, 1] stopped 0 0 0x400000000 disabled kernel
 11 [1, 2, 1] stopped 0 0 0x400000000 disabled kernel
 12 [0, 0, 2] stopped 0 0 0x400000000 disabled kernel
 13 [1, 0, 2] stopped 0 0 0x400000000 disabled kernel
 14 [0, 1, 2] stopped 0 0 0x400000000 disabled kernel
 15 [1, 1, 2] stopped 0 0 0x400000000 disabled kernel
 16 [0, 2, 2] stopped 0 0 0x400000000 disabled kernel
 17 [1, 2, 2] stopped 0 0 0x400000000 disabled kernel
 18 [0, 0, 3] stopped 0 0 0x400000000 disabled kernel
 19 [1, 0, 3] stopped 0 0 0x400000000 disabled kernel
 20 [0, 1, 3] stopped 0 0 0x400000000 disabled kernel
 21 [1, 1, 3] stopped 0 0 0x400000000 disabled kernel
 22 [0, 2, 3] stopped 0 0 0x400000000 disabled kernel
 23 [1, 2, 3] stopped 0 0 0x400000000 disabled kernel
The number of runnable cores is: 3
The current core is: 3
E>

stop

This command can be used to change one or more cores from RUNNING to
STOPPED. It prompts the user to select the core by number, as shown in this
example. As you can see, an attempt to stop a core that is not running will get a
message.	

E> stop
This command allows you to freeze a core's execution by changing its status to STOPPED.
Enter the number of a core (or ENTER to exit): 6
Core 6 is now STOPPED.
Enter the number of a core (or ENTER to exit): 8
Core 8 is already STOPPED!
Enter the number of a core (or ENTER to exit): 9
Core 9 is now STOPPED.
Enter the number of a core (or ENTER to exit): << ENTER >>
E>

symbols

Executable (.exe) files normally contain debugging information. This includes a
number of symbols. This command lists all known symbols. It lists all symbols twice.
The first list is sorted by numerical value. The second is sorted alphabetically.	

For example:	

Emulator Reference Manual / Porter	 	 Page of 	71 147

Chapter 3: Commands	

E> symbols
Symbols (ordered numerically):
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 KPL_Compiler_Path_Testing_Symbol 0 0 114 runtime.s
 _GlobalVar_alreadyInAlloc 8 8 LABEL 175 System.s
 OFFSET_OF_memAllocFun 10 16 1784 runtime.s
 _StringConst_136 10 16 LABEL 182 System.s
 OFFSET_OF_memFreeFun 18 24 1814 runtime.s
 _StringConst_135 20 32 LABEL 187 System.s

 …etc…
 Serial_String_Addr 400104018 17180934168 2473 runtime.s
 Serial_String_In_Len 400104020 17180934176 2474 runtime.s
 Serial_String_Out_Len 400104028 17180934184 2475 runtime.s
Symbols (ordered alphabetically):
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 BadNumberString 18D08 101640 LABEL 1951 runtime.s
 BadNumberString_1 18D10 101648 LABEL 1954 runtime.s
 BadNumberString_x 18D48 101704 LABEL 1956 runtime.s
 BadTimerHandler 187FC 100348 LABEL 842 runtime.s

 …etc…
 stEq_loopD 18B78 101240 LABEL 1373 runtime.s
 stEq_loopD_x 18B98 101272 LABEL 1381 runtime.s
 stEq_retF 18BC8 101320 LABEL 1403 runtime.s
 stEq_retT 18BB8 101304 LABEL 1396 runtime.s
 startupMessage 18898 100504 LABEL 917 runtime.s
 strEqual 18B54 101204 LABEL 1357 runtime.s
E>

For programs compiled with the KPL compiler which include packages like System
and PrintPackage, there are a large number of symbols, making this command less
useful.	

dinfo

This command displays all the debugging information from the executable file.	

Note: This command produces a flood of information and is not very useful.	

This command was used in debugging the emulator.	

find

In order to find the value of a symbol, this command can be used. It prompts the
user to enter the symbol, or at least the first few characters of the symbol. It prints
all symbols that begin with the same characters. For example:	

Emulator Reference Manual / Porter	 	 Page of 	72 147

Chapter 3: Commands	

E> find
Enter the first few characters of the symbol; all matching will be printed: Pri
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 PrintBool 18EE8 102120 LABEL 2392 runtime.s
 PrintBoolStr 18F00 102144 LABEL 2400 runtime.s
 PrintCSRPrevPCAndHalt 18198 98712 LABEL 515 runtime.s
 PrintFalse 18EFC 102140 LABEL 2398 runtime.s
 PrintRuntimeError 18850 100432 LABEL 881 runtime.s
E>

Case is significant.	

Helpful Trick: To get a list of all private functions, recall that the KPL compiler
attaches a prefix to the names of all private functions. So enter “_fun” as the search
pattern:	

E> find
Enter the first few characters of the symbol; all matching will be printed: _fun
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _function_10_RandomNumber CF14 53012 LABEL 856 MyProgram.s
 _function_11_foo4 CEE4 52964 LABEL 830 MyProgram.s
 _function_12_foo3 CD28 52520 LABEL 650 MyProgram.s
 _function_137_printClassNameFromDPT 6B68 27496 LABEL 8567 System.s
 _function_138_printClassNameOfObject 6A9C 27292 LABEL 8448 System.s
 _function_139_invokeDebugger 6A38 27192 LABEL 8387 System.s
 _function_13_foo2 CC68 52328 LABEL 549 MyProgram.s
 _function_140_KPLDefaultFatalErrorFunction 5904 22788 LABEL 6144 System.s
 _function_141_KPLMemoryFree_Version1 344C 13388 LABEL 1642 System.s
 _function_142_KPLMemoryAlloc_Version1 3340 13120 LABEL 1524 System.s
 _function_143_KPLMemoryFree_Default 3310 13072 LABEL 1492 System.s
 _function_144_KPLMemoryAlloc_Default 327C 12924 LABEL 1433 System.s
 _function_14_foo1 CC44 52292 LABEL 524 MyProgram.s
 _function_19_hostDateNext BEFC 48892 LABEL 2299 HostInterface.s
 _function_20_hostDateSize BED4 48852 LABEL 2277 HostInterface.s
 _function_21_argumentNext BD60 48480 LABEL 2106 HostInterface.s
 _function_22_argumentSize BD3C 48444 LABEL 2086 HostInterface.s
 _function_26_LocalPrintString 7650 30288 LABEL 521 PrintPackage.s
 _function_27_LocalPrintChar 7604 30212 LABEL 475 PrintPackage.s
E>

This same trick can be used to find where all the private globals are located:	

E> find
Enter the first few characters of the symbol; all matching will be printed: _Glob
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _GlobalVar_TheHeapArray 18F48 102216 LABEL 867 System.s
 _GlobalVar_alreadyInAlloc 8 8 LABEL 175 System.s
 _GlobalVar_heapNextPtr 5F77058 100102232 LABEL 873 System.s
 _GlobalVar_heapRegionBeyond 5F77060 100102240 LABEL 876 System.s
 _GlobalVar_heapRegionStart 5F77050 100102224 LABEL 870 System.s
 _GlobalVar_heapTotalAllocation 5F77070 100102256 LABEL 882 System.s
 _GlobalVar_heapTotalBytesFreed 5F77068 100102248 LABEL 879 System.s
 _GlobalVar_mainThreadData 5F77078 100102264 LABEL 885 System.s
 _GlobalVar_myGlob 2880 10368 LABEL 203 MyProgram.s
 _GlobalVar_myGlobChar 2890 10384 LABEL 209 MyProgram.s
 _GlobalVar_myGlobVar2 29F8 10744 LABEL 266 MyProgram.s
 _GlobalVar_print 23F8 9208 LABEL 93 HostInterface.s
 _GlobalVar_printPrefs_0 5F770C8 100102344 LABEL 891 System.s
 _GlobalVar_randomSeed 2888 10376 LABEL 206 MyProgram.s
 _GlobalVar_readString 2400 9216 LABEL 96 HostInterface.s
 _GlobalVar_threadPrefs_0 5F770B8 100102328 LABEL 888 System.s
E>

Emulator Reference Manual / Porter	 	 Page of 	73 147

Chapter 3: Commands	

To get a list of all public things in a package, use a search string that begins with 11

“_P_” followed by the package name:	

E> find
Enter the first few characters of the symbol; all matching will be printed: _P_Mis
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _P_MiscLib_AppendIntToString C760 51040 LABEL 1061 MiscLib.s
 _P_MiscLib_GetInputLine C500 50432 LABEL 773 MiscLib.s
 _P_MiscLib_GetInt C474 50292 LABEL 684 MiscLib.s
 _P_MiscLib_GetOneChar C3EC 50156 LABEL 609 MiscLib.s
 _P_MiscLib_GetYesNo C2C8 49864 LABEL 438 MiscLib.s
 _P_MiscLib_Indent C7F8 51192 LABEL 1141 MiscLib.s
 _P_MiscLib_InputBuffer 1C10 7184 LABEL 311 MiscLib.s
 _P_MiscLib_PadTo C86C 51308 LABEL 1205 MiscLib.s
E>

find2

This command allows you to look up a symbol given its value. For example:	

E> find2
Enter a value in hex: 18f00
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 PrintBoolStr 18F00 102144 LABEL 2400 runtime.s
E> find2
Enter a value in hex: 18f01
***** There is no symbol with that value. (The next largest value is 0x18f10 (decimal 102160). *****
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _TrueMsg 18F10 102160 LABEL 2405 runtime.s
E>

This command was useful in debugging the emulator.	

where

This command allows you to see where the currently selected core is stopped. To get
the current location, just respond to the prompt with ENTER.	

E> where
Enter an address in hex (or 0 for current PC): << ENTER >>
CURRENT LOCATION OF PC:
 ASSIGN on line 76 in function "foo2" [MyProgram.c]

 This includes public functions, public global variables, public classes, etc.11

Emulator Reference Manual / Porter	 	 Page of 	74 147

Chapter 3: Commands	

 00000CD08: 1E0040F7 load.d r7,64(sp) # offset = 0x40
E>

If the address is within a function coded in KPL, the debugger will indicate the type
of statement (In this example, it’s an assignment statement) and function name
(“foo2”), as well as the source filename and line number where that statement is
located (line 76 within “MyProgram.c”).	

You can also enter a specific address to learn in which function it resides. For
example:	

E> where
Enter an address in hex (or 0 for current PC): c000
 ASSIGN on line 671 in function "hostDate" [HostInterface.c]
 00000C000: 01FFFF77 addi r7,r7,-1
E>

If the address is not in anything that the debugger knows about, it will just give the
contents of memory at that location. For example:	

E> where
Enter an address in hex (or 0 for current PC): 100000
 000100000: 00000000
E>

At other times you might ask for the address of some variable. Here, we see the
name of the variable and an indication of its value in hex, decimal, and ASCII.	

E> where
Enter an address in hex (or 0 for current PC): 18F10
 Within Function "PrintBool" [runtime.s]
 _TrueMsg:
 000018F10: 54525545 # decimal = 1414681925, ascii = "TRUE"
E>

g go

This command will start execution. The emulator will begin executing machine
instructions and this will continue until	

	 • Command-C is pressed	

Emulator Reference Manual / Porter	 	 Page of 	75 147

Chapter 3: Commands	

	 • A DEBUG or BREAKPOINT instruction is executed	
	 • A SLEEP1 or SLEEP2 instruction is executed	
	 • An error occurs or a warning is printed	
	 • A “watched” location is stored into	

After one of these events occurs, the emulator will re-enter command mode and you
can use the various commands to examine the state. The SLEEP2 instruction will
terminate the emulator itself.	

If there are multiple cores, then time slicing will occur, and each core will have a turn
executing, until one of the above events happens on any running core. After
execution halts, the core that was last running will become the “currently selected”
core.	

If “auto-go” is enabled (i.e., the “-g” command line option was used), then execution
will commence immediately upon startup of the emulator or execution of the
“rerun” command, as if the “go” command had been entered.	

s step

The “step” command is similar to the “go” command, except that only one
instruction will be executed.	

This command will print the machine instruction before it is executed. Here is an
example. After two instructions are executed (see highlighting below), the user hits
ENTER to see where in the program execution is located (see highlighting below).	

E> s
Executing this instruction:
 00000CC58: 220000F0 store.d 0(sp),r0
Instruction executed so far: Core_0 = 2812
 total = 2812
E> s
Executing this instruction:
 00000CC5C: 1E0010F1 load.d r1,16(sp) # offset = 0x10
Instruction executed so far: Core_0 = 2813
 total = 2813
E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0

Emulator Reference Manual / Porter	 	 Page of 	76 147

Chapter 3: Commands	

Instruction executed so far: Core_0 = 2813
 total = 2813
CURRENT LOCATION OF PC:
 CALL on line 65 in function "foo1" [MyProgram.c]
 00000CC60: 1900010E call _function_13_foo2 # PC + 0x10
E>

n stepn

This command prompts for a number and then executes that number of statements.
Either “stepn” or the abbreviation “n” can be used. For example:	

E> stepn
Enter the number of instructions to execute (in decimal): 100
Beginning execution...
Done!
E> n
Enter the number of instructions to execute (in decimal): 23
Beginning execution...
Done!
E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0
Instruction executed so far: Core_0 = 123
 total = 123
CURRENT LOCATION OF PC:
 _CheckVersion_P_System_:
 000002D28: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
E>

 	
If multiple cores are runnable and the number entered is large enough, timeslicing
will occur and all cores will make progress.	

Execution may halt prematurely, under the same circumstances that would halt
execution for the “go” command. This includes errors and instructions like DEBUG.	

t

Emulator Reference Manual / Porter	 	 Page of 	77 147

Chapter 3: Commands	

The “t” command is similar to the “go” command in that it begins execution. Here
are the differences:	

	 Execution will halt after…	
	 	 A CALL instruction is executed.	
	 	 A RETURN instruction is executed.	
	 	 A SYSRET instruction is executed.	
	 	 A SYSCALL instruction is executed 	12

	 	 An exception occurs.	
	 Only the currently selected core will run.	

Here is an example:	

E> t
 Within Function "foo1" [MyProgram.c]
 _function_12_foo1:
 00000CC2C: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
Instr count = 2808
E> t
 Within Function "foo2" [MyProgram.c]
 _function_11_foo2:
 00000CC50: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
Instr count = 2814
E> t
 RETURN on line 65 in function "foo2" [MyProgram.c]
 00000CC78: 1A0000E0 ret # synthetic for JALR r0,0(lr)
Instr count = 2825
E> t
 RETURN on line 47 in function "foo1" [MyProgram.c]
 00000CC4C: 1A0000E0 ret # synthetic for JALR r0,0(lr)
Instr count = 2828
E> t

This instruction allows the programmer to jump through the execution of the
program at a much faster rate than with the “step” command.	

 The SYSCALL instruction causes an exception, and exceptions cause a halt. 12

Emulator Reference Manual / Porter	 	 Page of 	78 147

Chapter 3: Commands	

Debugging Trick: How to Back Up Execution	

Assume you want to back up the program’s execution. That is, you want to execute in
reverse, undoing the execution of one or more instructions, until you get to some
particular point in the past. How can this be done?	

The trick is to restart the program from the beginning and execute instructions up to
the point in time you want.	

It is helpful that commands like “t" displays the instruction count. The instruction
count is the number of machine instructions that have been executed so far and we
can use this number to identify when in the past we want to reach.	

To get to a point in the past, we can simply issue a “reset” command and then use
the “stepn” command to get to the desired point. 	13

For example, looking back at the previous example, let’s assume we have gone a little
too far. We wish we had stopped right before the return from “foo2” and so we could
have looked at the local variables of “foo2” directly before the return. We see that
the return from “foo2” happened at 2825; this is our target. 	14

KPL always ends a function with 3 instructions (restore the stack, restore register lr,
and the RET instruction).	

So compute 2825 - 3 to get 2822.	

First we issue the “reset” command, which restarts the emulator.	

E> reset
Resetting all processor state and re-reading file "MyProgram.exe"...
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into register r6.
E>

 This assumes that only one core is running. If you are emulating a multicore system and 13

timeslicing is occurring, this must be taken into account. The “t” command disables timeslicing
while the “stepn” command does not, so the instruction counts may be different.

 The “t” command stops after the CALL or RET instruction is executed. So 2825 is the count after 14

the RET.

Emulator Reference Manual / Porter	 	 Page of 	79 147

Chapter 3: Commands	

Then we issue an “stepn” command (abbreviation: “n”), with the computed count.	

E> stepn
Enter the number of instructions to execute (in decimal): 2822
Beginning execution...
MyProgram running...
Done!
E>

Then we hit ENTER to see where we are: the return within “foo2”. We see the ADDI
instruction, which adjusts to the stack pointer, is next so this confirms that we are
were we want to be.	

E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0
Instruction executed so far: Core_0 = 2822
 total = 2822
CURRENT LOCATION OF PC:
 RETURN on line 65 in function "foo2" [MyProgram.c]
 00000CC70: 010008FF addi sp,sp,8
E>

Then the “stack” command can be used to view the local variables in “foo2.” In this
function, there is only one, named “myArg”.	

E> stack
 Function/Method Execution at... File
 ============================== ==================== ==============================
 foo2 RETURN line 65 MyProgram.c
 foo1 CALL line 46 MyProgram.c
 main CALL line 37 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

-------------------- foo2 --------------------
Execution is stopped at RETURN on line 65 in function "foo2" [MyProgram.c]
 Code Address: 00000cc6c
 Frame: 00fffff98 - 00fffffa0, size = 0x8 (decimal 8)
 arg offset 8 0x0008... 00fffffa0: 0000000000000000 myArg: int = 0
I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)? << ENTER >>
E>

Finally we might use the “step” command to execute the final 3 instructions of the
function:	

E> s
Executing this instruction:

Emulator Reference Manual / Porter	 	 Page of 	80 147

Chapter 3: Commands	

 00000CC70: 010008FF addi sp,sp,8
Instruction executed so far: Core_0 = 2823
 total = 2823
E> s
Executing this instruction:
 00000CC74: 1EFFF8FE load.d lr,-8(sp) # offset = 0xFFF8
Instruction executed so far: Core_0 = 2824
 total = 2824
E> s
Executing this instruction:
 00000CC78: 1A0000E0 ret # synthetic for JALR r0,0(lr)
Instruction executed so far: Core_0 = 2825
 total = 2825
E>

watch

The “watch” command is used to stop execution whenever a particular address in
memory is stored into.	

In this example, we first use the “globals” command to learn the address of a
variable called “myGlob”. The address is highlighted below:	

E> globals
From package "MyProgram.c"...
 line 100 000002880: ffffffffffffffff myGlob: int = -1
 line 115 000002888: 1234567890abcdef randomSeed: int = 1311768467294899695
 line 102 000002890: 48 myGlobChar: byte = 'H' (decimal 72)
 line 5 0000029d0: 0000000000000000 MyGlobal: int = 0
 line 101 0000029d8: 0000000000000000 myGlobVar2: String = null
From package "runtime.s"...
From package "HostInterface.c"...
 line 84 0000023c8: 00000000000023e0 stdin: ptr --> 00000000 00000000 00000000
 00000001 00000000 00000002...
 line 85 0000023d0: 00000000000023e8 stdout: ptr --> 00000000 00000001 00000000
 00000002 00000000 00018e88...

 … etc …
E>

Next, we use the “watch” command and provide this address:	

E> watch

Emulator Reference Manual / Porter	 	 Page of 	81 147

Chapter 3: Commands	

 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: 000002880
Execution will halt whenever address 0x000002880 is stored into.
E>

Then we issue the “go” command to begin execution. The 2796-th instruction to be
executed was a STORE into this location. We also see the value that was stored.	

E> g
Beginning execution...
MyProgram running...

********** The value 0x000000000001e240 was stored into the 'watched'
 address (000002880) at instr time = 2796 **********
Done!
E>

We can then use the “hex” command to interpret this value as a decimal number, a
series of ASCII codes, and as a double precision floating point number. The variable
“myGlob” had type int as we saw earlier, so we can focus on the decimal value.	

E> hex
Enter a value in hex: 0x000000000001e240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: ".......@"
 real: 6.099536837297693335786247689e-319
E>

To determine were in the source code this occurred, we just hit ENTER. Since
execution is stopped, about to execute the instruction following the STORE, we are
likely stopped on the line just after the update to the variable:	

E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0
Instruction executed so far: Core_0 = 2796
 total = 2796
CURRENT LOCATION OF PC:
 RETURN on line 108 in function "foo4" [MyProgram.c]
 00000CE54: 04006406 movi r6,100 # synthetic for XORI r6,r0,0x64
E>

Emulator Reference Manual / Porter	 	 Page of 	82 147

Chapter 3: Commands	

This command will allow only one “watched” location at a time. The watch remains 15

in effect until cancelled.	

The user can hit ENTER to see which address is being watched and -1 to cancel a
watch.	

E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: << ENTER >>
Execution will halt whenever address 0x000002880 is stored into.
E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: -1
From now on, no address is being watched.
E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: << ENTER >>
There is no current watch address.
E>

The watched address is the address of a byte and need not be aligned. Any STORE —
whether byte, halfword, word, or doubleword — that includes the watched byte will
trigger a halt.	

reset

This command will reset the emulator as if the user had executed a “quit” command
and then restarted the emulator.	

The “reset” command will:	

	 • If the BootROM has been updated, 	

 We can certainly imagine a debugger that allows multiple locations to be watched 15

simultaneously, but in practice, one at a time is adequate. In fact, the “watch” command is used
quite rarely.

Emulator Reference Manual / Porter	 	 Page of 	83 147

Chapter 3: Commands	

	 	 ask about updating the “emulationROM” file	
	 • If the SecureStorage has been updated, 	
	 	 ask about updating the “emulationSecure” file	
	 • Re-read the “emulationParms” file	
	 • Reset the ROM from the “emulationROM” file	
	 • Reset the SecureStorage from the “emulationSecure” file	
	 • Reset all processors the their initial state	
	 	 Clear all registers, clear private and shared memory	
	 • Reset the instruction counters and cycle clocks	
	 • Reset I/O devices	
	 • Re-read the executable file and the debugging information	
	 • Reset the multicore timeslice scheduling	

This command will always leave the emulator in “command mode”. It will not start
execution.	

rerun

The “rerun” command is equivalent to executing a “reset” command to completely
reset the processor state, followed by the “go” command to start execution from
beginning.	

In the following example, we load and begin execution of a program. The program
prints a message (see highlighting) and then stops after encountering a DEBUG
instruction.	

Shell% blitz MyProgram.exe -g -nowarn
MyProgram running...

**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 38)
 ---------- ################# here #################
 00000CBDC: 00280000 debug

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====

Emulator Reference Manual / Porter	 	 Page of 	84 147

Chapter 3: Commands	

===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

In a separate window (not shown) we edit and recompile our program. We changed
the message. Then we use the “rerun” command to reset the processor state and re-
run the program. We can see that the modified program is now executed and the
message is now different:	

E> rerun
MyProgram running... HELLO WORLD!

**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 38)
 ---------- ################# here #################
 00000CBEC: 00280000 debug
E>

The above example illustrates the use of this command in a common approach to
debugging:	

	 Write and run a new program.	
	 REPEAT	
	 	 See a problem.	
	 	 	 [Use debugging commands to explore the state after an error is reported.]	
	 	 Edit the program.	
	 	 Recompile the program.	
	 	 Re-run the program (use the “rerun” command).	
	 UNTIL program works 	16

 The actual expression is (programWorks | sleepy | hungry). A REPEAT-UNTIL is more 16

appropriate than a WHILE, since the loop will always iterate at least once.

Emulator Reference Manual / Porter	 	 Page of 	85 147

Chapter 3: Commands	

hex
dec
ascii

These three commands exist for convenience and have nothing to do with debugging
or emulation. It is just handy to be able to convert from hex into other forms.	

The “hex” command asks for a value to be entered in hex. The “dec” command asks
for a value to be entered in decimal. The “ASCII” command asks for a single
character to be entered.	

All commands do the same thing. The input is converted to a 64 bit value, which is
then displayed in hex, decimal, ascii, and as a double precision value.	

A hex value can be entered in upper or lowercase and the “0x” prefix is optional.
Also, a negative sign is allowed, as in the highlighted line:	

E> hex
Enter a value in hex: 1e240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: ".......@"
 real: 6.099536837297693335786247689e-319
E> hex
Enter a value in hex: 0x000000000001E240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: ".......@"
 real: 6.099536837297693335786247689e-319
E> hex
Enter a value in hex: -abc
 hex: 0xFFFFFFFFFFFFF544 (-0xabc)
 decimal: -2748
 ascii: ".......D"
 real: nan
E>

The “dec” command is mostly useful for converting decimal into hex. The decimal
value can be entered in upper or lowercase and the “0x” prefix is optional. Also, a
negative sign is allowed:	

E> dec
Enter a value in decimal: -1234
 hex: 0xFFFFFFFFFFFFFB2E (-0x4d2)
 decimal: -1234

Emulator Reference Manual / Porter	 	 Page of 	86 147

Chapter 3: Commands	

 ascii: "........"
 real: nan
E> dec
Enter a value in decimal: 123456789
 hex: 0x00000000075BCD15 >117 MiBytes
 decimal: 123456789
 ascii: ".....[.."
 real: 6.099575819077150210138583221e-316
E>

The “ascii” command is mostly useful for determining the ASCII code for a given
character. You must enter a line containing a exactly one character from the ASCII
character set.	

E> ascii
Enter a single character followed by a newline/return: k
 hex: 0x000000000000006B
 decimal: 107
 ascii: ".......k"
 real: 5.286502410501338022689286084e-322
E>

parms

In order to startup, the emulator needs some basic information about the Blitz-64
processor to be emulated. For example, it needs to know how much memory the
system will have, how many cores, and so on.	

This information is normally kept in a file named “emulationParms”. If this file
exists upon startup (or at a “reset” or “rerun” command), it will be read and the
values of the parameters will be gotten from the file. If the file does not exist, then
default values will be used.	

The “parms” command is used to	

	 • Display the current values of the “emulation parameters”, and	
	 • Create a new “emulationParms” file.	

The command begins by displaying the current values. In the following example,
there was no “emulationParms” file upon start up and these are the default values.	

Emulator Reference Manual / Porter	 	 Page of 	87 147

Chapter 3: Commands	

The command asks whether a file containing the defaults should be created (see
highlighted):	

E> parms
========================= Emulation Parameters ==============================
 PRIVATE_MEMORY_SIZE 0x0000000040000000 (decimal: 1073741824)
 SHARED_MEMORY_SIZE 0x0000000040000000 (decimal: 1073741824)
 NUMBER_OF_TLB_REGS 0x0000000000000010 (decimal: 16)
 VALUE_OF_CSR_VERSION 0x000249F000000001 (decimal: 644245094400001)
 INITIAL_VALUE_OF_PC 0x0000000400000000 (decimal: 17179869184)
 CORES_NUMBER_OF_COLS 0x0000000000000001 (decimal: 1)
 CORES_NUMBER_OF_ROWS 0x0000000000000001 (decimal: 1)
 CORES_NUMBER_OF_PLANES 0x0000000000000001 (decimal: 1)
 BOOT_ROM_START_ADDR 0x0000000400000000 (decimal: 17179869184)
 BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040 (decimal: 64)
 SECURE_STORAGE_START_ADDR 0x0000000400100000 (decimal: 17180917760)
 SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001 (decimal: 1)
 SIMPLE_SERIAL_START_ADDR 0x0000000400104000 (decimal: 17180934144)
 HOST_DEVICE_START_ADDR 0x0000000400108000 (decimal: 17180950528)
 DEBUG_INVOKES_EMULATOR 0x0000000000000001 (decimal: 1)
 START_ALL_CORES 0x0000000000000000 (decimal: 0)
 IN_RAW_IGNORE_CONTROL_C 0x0000000000000000 (decimal: 0)
 TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001 (decimal: 1)
===

=== ABOUT THE EMULATION PARAMETERS...
===
=== The emulation parameters are read in from the file "emulationParms", if it exists
=== when the emulator starts up. If the file does not exist at startup, defaults
=== are assumed. You may edit the "emulationParms" file to change the values. To re-read
=== an updated "emulationParms" file, either restart the emulator or use the “reset"
=== command.

The file "emulationParms" does not seem to exist and the above values are the defaults.

Would you like me to write these values out, creating a new file? y
The "emulationParms" file has been written out.
E>

In this case, the user answered “yes” and a text file named “emulationParms” was
created. Here are the contents of this file:	

Blitz-64 Emulation Parameters
#
This file is read by the Blitz-64 emulator when it starts up and after a
"reset" command. This file is used to initialize various values that
will be used by the emulator.
#
This file was produced by the emulator with the "parms" command. It may
be edited to change any or all values.
#
Each line has variable name followed by an integer value. A value may
be specified in either decimal (e.g., "1234") or hex (e.g., "0x1234abcd56780000").
Values may be left out if desired, in which case a default will be used.
#
#

Emulator Reference Manual / Porter	 	 Page of 	88 147

Chapter 3: Commands	

PRIVATE_MEMORY_SIZE 0x0000000040000000
SHARED_MEMORY_SIZE 0x0000000040000000
NUMBER_OF_TLB_REGS 0x0000000000000010
VALUE_OF_CSR_VERSION 0x000249F000000001
INITIAL_VALUE_OF_PC 0x0000000400000000
CORES_NUMBER_OF_COLS 0x0000000000000001
CORES_NUMBER_OF_ROWS 0x0000000000000001
CORES_NUMBER_OF_PLANES 0x0000000000000001
BOOT_ROM_START_ADDR 0x0000000400000000
BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040
SECURE_STORAGE_START_ADDR 0x0000000400100000
SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001
SIMPLE_SERIAL_START_ADDR 0x0000000400104000
HOST_DEVICE_START_ADDR 0x0000000400108000
DEBUG_INVOKES_EMULATOR 0x0000000000000001
START_ALL_CORES 0x0000000000000000
IN_RAW_IGNORE_CONTROL_C 0x0000000000000000
TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001

To modify the parameters, the user can edit this file with some text editor and
modify the hex values directly. Upon restarting the emulator, the “parms” command
can be used to verify the new values. The highlighted area show some changes that
have been made.	

E> parms
========================= Emulation Parameters ==============================
 PRIVATE_MEMORY_SIZE 0x0000000080000000 (decimal: 2147483648)
 SHARED_MEMORY_SIZE 0x0000000004000000 (decimal: 67108864)
 NUMBER_OF_TLB_REGS 0x0000000000000010 (decimal: 16)
 VALUE_OF_CSR_VERSION 0x000249F000000001 (decimal: 644245094400001)
 INITIAL_VALUE_OF_PC 0x0000000400000000 (decimal: 17179869184)
 CORES_NUMBER_OF_COLS 0x0000000000000002 (decimal: 2)
 CORES_NUMBER_OF_ROWS 0x0000000000000003 (decimal: 3)
 CORES_NUMBER_OF_PLANES 0x0000000000000004 (decimal: 4)
 BOOT_ROM_START_ADDR 0x0000000400000000 (decimal: 17179869184)
 BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040 (decimal: 64)
 SECURE_STORAGE_START_ADDR 0x0000000400100000 (decimal: 17180917760)
 SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001 (decimal: 1)
 SIMPLE_SERIAL_START_ADDR 0x0000000400104000 (decimal: 17180934144)
 HOST_DEVICE_START_ADDR 0x0000000400108000 (decimal: 17180950528)
 DEBUG_INVOKES_EMULATOR 0x0000000000000001 (decimal: 1)
 START_ALL_CORES 0x0000000000000000 (decimal: 0)
 IN_RAW_IGNORE_CONTROL_C 0x0000000000000000 (decimal: 0)
 TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001 (decimal: 1)
===

=== ABOUT THE EMULATION PARAMETERS...
===
=== The emulation parameters are read in from the file "emulationParms", if it exists
=== when the emulator starts up. If the file does not exist at startup, defaults
=== are assumed. You may edit the "emulationParms" file to change the values. To re-read
=== an updated "emulationParms" file, either restart the emulator or use the "reset"
=== command.

Emulator Reference Manual / Porter	 	 Page of 	89 147

Chapter 3: Commands	

The file "emulationParms" already exists.

Would you like me to write these values out, overwriting the existing file? n
E>

If the “emulationParms” file contains errors when it is read in, the emulator will
complain with an error message and ignore all the parameters.	

E> reset
Resetting all processor state and re-reading file "MyProgram.exe"...

***** ERROR in "emulationParms" file: CORES_NUMBER_OF_COLS is not 0..1023!
***** ERROR in "emulationParms" file: An attempt to set non-existent
 value "BOOT_ROM_START_ADDRxx"!
***** ERROR in "emulationParms" file: The line beginning
 "SECURE_STORAGE_NUMBER_OF_PAGES" has no value!
***** ERROR in "emulationParms" file: All values in the file
 have been ignored. Use the "parms" command.
E>

rom

Upon power-up every Blitz core begins by executing a boot program which is located
in read-only memory (ROM). This area of memory is called the “BootROM”. The
Program Counter (PC) is initialized to the first address in the BootROM and
execution begins with the first instruction being fetched from the first bytes of the
BootROM area. This program is called the “BootROM program”.	

The BootROM code is a short program that is responsible for getting the processor
going. Tasks might include running a Power-On-Test (POST) to determine if the core
is functional and determining how much memory is installed and resetting the I/O
devices. The main task is often to read in something (such as a kernel) from storage
(i.e., or disk or flash memory) and end execution by transferring to the storage-
based program it read in. The BootROM code might also provide a few critical
functions that can be used later. Examples include some form of very basic
character-based output which can be used for error messages when all else fails. The
BootROM might use these functions itself to print out diagnostic messages during
the boot process.	

Historical Comments	

Emulator Reference Manual / Porter	 	 Page of 	90 147

Chapter 3: Commands	

In non-Blitz computers, the program equivalent to our BootROM code is called
“BIOS”, but we don’t use this term for Blitz. The term “BIOS” implies a set of concrete
specifications and behavior that applies primarily to Windows/PC machines.	

BIOS ends its execution by reading a single 512 byte block, called the “Master Boot
Record” (MBR), from disk/flash storage and jumping to that. 512 is not a lot of
space for a program, so a multi-step boot process was required. It works like this:
BIOS reads in a 512 byte block of memory and jumps to it. The code in the 512 byte
block is called the “Boot Loader-First Stage”. This program then reads in a larger
program called the “Boot Loader-Second Stage”.	

The first stage was necessarily a very small program, limited to 512 bytes, so it is not
able to parse and understand disk partitions or a complex file system. Therefore, the
first stage simply reads a fixed, predetermined area of disk/flash storage. For
example, if the MBR (master boot record) is block 0, the first stage code might read
blocks 1-31 from storage and jump to them. The second stage is then capable of
looking at the file system and understanding directories and so on. If the storage
device is partitioned, it will need to understand that as well. So the second stage is a
more sophisticated program capable of searching the file system and locating the file
containing the desired OS kernel. The second stage loads the kernel and jumps to it.
It is the second stage that determines which kernel (of there are several available)
will be chosen to execute.	

Since the blocks containing the second stage must be at fixed locations (such as
contiguous blocks 1-31 in our example), the second stage essentially lives outside
any partitions of file systems. The boot process also lives outside of any security
protection provided by the OS kernel, so it is a point of vulnerability. The boot
process must be absolutely secure, protected, reliable, and impenetrable to malware,
or else the kernel it loads can be compromised. 	17

Over time, we’ve seen…	

	 • An increase in the number of file systems	
	 • An increase in the number of OS kernels	
	 • An increase in the variety of hardware 	
	 • An increase in the security threats and malware attacks 	

 In 2021, we really ought to say “will be compromised” instead of “can be compromised”.17

Emulator Reference Manual / Porter	 	 Page of 	91 147

Chapter 3: Commands	

In order to accommodate the choices, there has been an increase in the complexity
of the boot process, leading to boot processes with names like GNU Gand Unified
Bootloader (GRUB), OpenFirmware, Firmware Interface (EFI), Unified Extensible
Firmware Interface (UEFI).	

The complexity increase has lead to a modern boot loader that requires drivers and
has a shell with multiple commands. This is beginning to look like a single-user OS.
With this level of complexity, comes the need for new version, software patches,
fixes. To hide all this from the typical user, the updating process may be automated.	

A Blitz implementation contains a section of memory called the BootROM. The
starting address and size of this region is fixed and unchangeable. It is specified by
the following emulation parameters, so it can be changed by updating the
“emulationParms” file:	

	 Parameter Name	 Typical Value	
BOOT_ROM_START_ADDR 0x4_0000_0000
BOOT_ROM_NUMBER_OF_PAGES 64 pages (1 MiByte)

The file “emulationROM” contains bytes. In this example, the file size would be
exactly 1 MiByte. Upon startup or the “reset” command, the bytes are loaded into
the processor ROM.	

When emulating a multi-core processor, all cores share the same ROM. Whether
there is a separate copy of the ROM for each core or whether there is only one ROM
is invisible to the code.	

The ROM cannot be altered by the Blitz machine instructions since the ROM is read-
only.	

However, the user of the emulator can modify the ROM. In the following example, the
“dumpMem2” command is used to examine the first few bytes of the ROM area. The
first 8 bytes are highlighted.	

E> dm2
Enter the starting (physical) memory address in hex: 400000000
Enter the number of bytes in hex (or 0 to abort): 30
BOOTSTRAP ROM MEMORY:
400000000: 0300 002F 1400 010D 0400 00DD 1A00 0060 .../...........`
400000010: 002B 00F7 0500 3077 0700 3077 1100 0078 .+....0w..0w...x
400000020: 1A00 0060 1700 0241 0400 1D02 1900 074E ...`...A.......N

Emulator Reference Manual / Porter	 	 Page of 	92 147

Chapter 3: Commands	

We can also disassemble the bytes in the ROM area with the “dis” command:	

E> dis
Enter the beginning address (in hex): 400000000
 400000000: 0300002F mov sp,r2 # synthetic for ORI _,_,0
 400000004: 1400010D upper20 gp,0x10 # decimal = 16
 400000008: 040000DD xori gp,gp,0
 40000000C: 1A000060 jalr r0,0(r6)

 … etc …

Then, we can use the “setmem” command to alter memory. Here, we modify the first
8 bytes:	

E> setmem
Enter the (physical) memory address in hex of the doubleword to be modified: 400000000
***** This address is in Boot ROM, but you can proceed to store to it *****
The old value is:
0x400000000: 0x0300002F1400010D
Enter the new value (8 bytes in hex): 1111222233334444
0x400000000: 0x1111222233334444
E>

We can use the “dumpMem2” command again to see the change:	

E> dm2
Enter the starting (physical) memory address in hex: 400000000
Enter the number of bytes in hex (or 0 to abort): 30
BOOTSTRAP ROM MEMORY:
400000000: 1111 2222 3333 4444 0400 00DD 1A00 0060 ..""33DD.......`
400000010: 002B 00F7 0500 3077 0700 3077 1100 0078 .+....0w..0w...x
400000020: 1A00 0060 1700 0241 0400 1D02 1900 074E ...`...A.......N
E>

At some later time, we will terminate the emulator with the “quit”command. If the
ROM has been changed, the emulator will ask whether the new ROM contents
should be made permanent by writing it to the “emulationROM” file.	

E> q
The ROM has been modified. Shall I write it out to the host file ("emulationROM")? y
The "emulationROM" file has been updated.
Shell>

There is also a “rom” command which gives the user a chance to write out the ROM
contents immediately.	

E> rom

=== ABOUT THE READ-ONLY MEMORY (ROM)...
===
=== This emulator supports only a single ROM memory; All cores shared this ROM.
=== The data for the ROM comes from a file called "emulationROM", if it exists

Emulator Reference Manual / Porter	 	 Page of 	93 147

Chapter 3: Commands	

=== when the emulator starts up. If this file does not exist at startup, the ROM
=== is initialized to zeros. To re-read the contents of an updated "emulationROM"
=== file, either restart the emulator or use the "reset" command.

The file "emulationROM" already exists.

Would you like me to write out the current ROM contents, overwriting the existing file? y

This command continues with a similar question about the Secure Storage Device:	

=== ABOUT THE SECURE STORAGE DEVICE...
===
=== This emulator supports only a single Secure Storage device; it is shared by all cores.
=== The data for the the Secure Storage device comes from a file called "emulationSecure",
=== if it exists when the emulator starts up. If this file does not exist at startup, the
=== Secure Storage device is initialized to zeros. To re-read the contents of an updated
=== "emulationSecure" file, either restart the emulator or use the "reset" command.

The file "emulationSecure" already exists.

Would you like me to write out the current Secure Storage contents, overwriting the existing file? n
E>

The “Secure Storage Device” is very much like a ROM except that it can be updated.	

The data for the Secure Storage Device is kept in a file called “emulationSecure”
From the point of view of the emulator, it functions very much like the ROM.	

The Secure Storage Device is described in:	

	 “Blitz-64: Instruction Set Architecture Reference Manual”	

If an attempt is made to store into the Secure Storage Device after it is locked, the
emulator will print an error message and halt execution:	

***** Probable Error in the Blitz Code: Attempt to STORE to
 Secure Storage, but it is locked! (The STORE was ignored.) *****

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

Emulator Reference Manual / Porter	 	 Page of 	94 147

Chapter 3: Commands	

How To Update BootROM	

Here is how to store a “BootLoader” program into the BootROM:	

	 • Write the program.	
	 	 (either hand-coded assembler or large KPL program)	
	 • Compile, Assemble, and Link to produce a .exe executable file.	
	 • Run the emulator, without “auto-go” (without “-g” on command line).	
	 	 (This will load the program into the ROM area.)	
	 • Use the “rom” command to write to the “emulationROM” file.	
	 • Quit the emulator.	

A Blitz BootLoader will serve roughly the same function as a firmware program like
BIOS in traditional computers. It can be either a small, hand-coded 	
assembly language program or a larger KPL program. 	18

The assembly program should start with a line such as: 	19

.begin kernel,startaddr=0x400000000,gp=undefined

The next step is to assemble and link it:	

Shell% asm myBoot.s -o myBoot.o
Shell% link myBoot.o -o myBoot.exe -k

Then, the emulator is started with this executable:	

Shell% blitz myBoot.exe
Reading executable file...
The executable file (myBoot.exe) was loaded. The _entry address (0x400000000)
was loaded into register r6.
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====

 At this time, all BootLoader programs are stand-alone, hand-coded assembly programs.18

 The “gp=undefined” might left off, or replaced with something specific like 19

“gp=0x400008000”. If left off, then the default value of 0x000010000 is assumed since “kernel”
is present. If not undefined, then the code had better initialize the gp register as the first
statement.

Emulator Reference Manual / Porter	 	 Page of 	95 147

Chapter 3: Commands	

===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

This will load the executable into the ROM area. Next we use the “rom” command to
write ROM data to the “emulationROM” file.	

We answer the question about writing the ROM with “yes” and the question about
writing the SecureStorage with “no”. 	20

E> rom

=== ABOUT THE READ-ONLY MEMORY (ROM)...
===
=== This emulator supports only a single ROM memory; All cores shared this ROM.
=== The data for the ROM comes from a file called "emulationROM", if it exists
=== when the emulator starts up. If this file does not exist at startup, the ROM
=== is initialized to zeros. To re-read the contents of an updated "emulationROM"
=== file, either restart the emulator or use the "reset" command.

The file "emulationROM" already exists.

Would you like me to write out the current ROM contents, overwriting the existing file? y
The "emulationROM" file has been updated.

=== ABOUT THE SECURE STORAGE DEVICE...
===
=== This emulator supports only a single Secure Storage device; it is shared by all cores.
=== The data for the the Secure Storage device comes from a file called "emulationSecure",
=== if it exists when the emulator starts up. If this file does not exist at startup, the
=== Secure Storage device is initialized to zeros. To re-read the contents of an updated
=== "emulationSecure" file, either restart the emulator or use the "reset" command.

The file "emulationSecure" already exists.

Would you like me to write out the current Secure Storage contents, overwriting the existing file? n
E> q
Shell%

Finally, we issue the “quit” command.	

The next time the emulator is started up, the new contents of the ROM will be
present.	

 The second answer doesn’t matter. Since the Secure Storage has not been modified, writing it 20

won’t hurt.

Emulator Reference Manual / Porter	 	 Page of 	96 147

Chapter 3: Commands	

Upon startup, the emulator will first load register r6 with the “EntryPoint” from the
executable .exe file. Then it will load the PC with the first address of the BootRom
(i.e., 0x4_0000_0000) and begin executing instructions.	

For most KPL programs, we can use a very simple BootLoader program that simply
jumps to the value in register r6. Here is such a program:	

.begin kernel,startaddr=0x400000000,gp=undefined
_entry:

.export _entry
jr r6 # Jump to address in r6 (i.e., to “_entry")

Upon startup or “reset”, the emulator will read an executable .exe file into memory
and load the registers as follows:	

	 r1	 0x636F6C64626F6F74 (This is ASCII for “coldboot”)	
	 r2	 The size of the private memory in bytes	
	 r3	 The starting address of shared memory	
	 r4	 The size of shared memory in bytes	
	 r5	 The highest address loaded	
	 r6	 The value of “EntryPoint” (from the .exe file)	

The emulator will then set PC to the first address of the BootROM and begin
executing the BootLoader program, which will immediately jump to the “_entry”
label in the program.	

serial

The “serial” command can be used to switch between “cooked” and “raw” mode. The
command starts by printing an explanation, then ends by asking if the user wishes to
switch mode.	

E> serial
==
From time to time a running Blitz program may read characters from the "Serial
I/O" device, which is intended to model a "terminal" interface. The character
data to be supplied to the running Blitz program will come from either a file
(which is specified using the "-i filename" command line option when the

Emulator Reference Manual / Porter	 	 Page of 	97 147

Chapter 3: Commands	

emulator is started) or from the interactive user-interface which you are
apparently using now.

With this second option, you may enter characters on "stdin" at any time during
the emulation of a running Blitz program. These characters will be supplied to
the running Blitz program (via the emulated Serial I/O device). If the emulator
seems to hang, it may be because the emulator is waiting for you to type
additional characters to supply to the running Blitz code. (It may also be
because the Blitz program has gotten into an infinite loop.)

At any time you may always hit control-C to suspend instruction execution and
re-enter the emulator command interface.

Normally an operating system will process user input by echoing characters on
the screen, buffering entire lines, and processing special characters like
backspaces, etc. The OS then delivers input, one full line at a time, to
running programs. This is called "cooked" input. But for some programs cooked
input is inadequate so these program use "raw mode". In raw mode, each character
is delivered as-is immediately after the key is pressed, with no buffering and
without the normal echoing and processing of special characters.

The Blitz emulator runs in either "raw mode" or "cooked mode". Simple Blitz
applications are usually designed to be run in cooked mode, while more complex
programs (e.g., OS kernels, editors, and anything that handles control-C or
arrow keys) may be designed to operate in raw mode.

In cooked mode, the host OS will suspend the emulator until you enter a complete
line of data and hit ENTER. This allows you to use the Backspace/DELETE key,
without requiring the Blitz program to deal with corrections.

In raw mode, the normal echoing of keystrokes by the host OS is turned off. A
good Blitz program should echo all characters, so you *should* see each
keystroke echoed properly. But of course your Blitz program may not be working
properly. It may fail to echo characters because it has a bug. Also, the
running Blitz program may not handle backspaces, newlines, CRs, etc., exactly as
you and your terminal expect. It may be helpful to recall \n=Control-J,
\r=Control-M, and Backspace=Control-H. On some terminals, the ENTER key is \r,
while many programs expect to use \n for END-OF-LINE.

Note that if a Blitz program expects to run in raw mode, but is run in cooked
mode, you will see all the characters echoed, resulting in a second, identical
line. A Blitz program meant to run on hardware will probably want to echo all
character data, so a duplication of input will occur if the program is emulated
in cooked mode.

The mode only affects typed input to be delivered to the running Blitz program;
typed input to the emulator itself is always in cooked mode.

For the Simple Serial device, the raw/cooked distinction applies only to single
character and string input. The device also supports the input of integers in
decimal and hex, but this always occurs in cooked mode.

The default is cooked mode; raw mode is selected with the "-raw" command line
option. The mode may also be changed with this command.

Emulator Reference Manual / Porter	 	 Page of 	98 147

Chapter 3: Commands	

Input for the Serial I/O device will come from...... "stdin"
The current input mode is........................... "cooked"
==
Do you want to change to "raw" mode? y
The terminal is in "raw" mode.
E>  

Emulator Reference Manual / Porter	 	 Page of 	99 147

Chapter 4: Errors and Warnings	

Problems During Emulation	

Things could go wrong during emulation. Here we discuss different kinds of errors.	

Fatal Error	

Some error conditions are considered “fatal” and cause an error message to be
displayed, followed by an immediate termination of the emulator. If this happens,
you might see a message:	

***** Blitz Emulator Error: <details> *****

The host file system could return an error or an attempt to allocate memory might
fail. Here are two examples:	

***** Blitz Emulator Error: Error from fseek for executable file *****

***** Blitz Emulator Error: Calloc failed - insufficient memory
 available - Shared RAM *****

Fatal error messages are sent to stderr, not stdout. After this, the emulator will try
to clean up and exit gracefully, with a Unix/Linux/POSIX exit code of 1.	

In some cases, the error message will be preceded by additional messages giving
more information about the problem.	

Command Line Errors	

Emulator Reference Manual / Porter	 Page of 100 147

Chapter 4: Errors and Warnings	

Any error on the command line will result in a message and immediate termination.
For example:	

***** Blitz Emulator Error: Options -raw and -i are incompatible;
 Use -h for help display. *****

The “-nowarn” Command Line Option	

If the emulator is run with the “-nowarn” option, certain warning and informational
messages will be suppressed.	

Here we see a typical run of the emulator. The highlighted material is displayed by
the emulator during startup, before execution begins.	

Shell% blitz -g MyProgram.exe
***** WARNING: The file "emulationParms" was not found. *****
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into register r6.
Beginning execution...

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Shell%

With the use of “-nowarn”, the highlighted material is suppressed:	

Shell% blitz -g MyProgram.exe -nowarn

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Shell%

The “-nowarn” option will suppress some informational messages and some
execution warnings, but the handling of “fatal” errors is not changed.	

Execution Errors	

During execution of Blitz code, certain conditions are considered errors or at least
probable errors. These will result in a message and an immediate halt to execution.
The message will have this format:	

Emulator Reference Manual / Porter	 	 Page of 	101 147

Chapter 4: Errors and Warnings	

***** Probable Error in the Blitz Code: <details> *****

An example follows. There may be additional information displayed (see highlighted
material):	

Shell% blitz -g -nowarn MyProgram.exe

***** Probable Error in the Blitz Code: Within PerformVirtualMapping,
 the physical address is uninstalled/invalid *****
Address = 0x300000000 [PHYSICAL]

***** Probable Error in the Blitz Code: Attempt to read from uninstalled address; zero returned *****
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about commands.
E> g

In general, the user can resume execution after such a message with the “go”
command. But the user really ought to use other debugging commands to
understand and fix the problem.	

Some execution errors will be ignored if the “-nowarn” command line option is
present. An example is an attempt to execute an illegal instruction. Without “-
nowarn”, this will suspend execution, as shown here:	

Shell% blitz -g MyProgram.exe
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C) was loaded into
register r6.
Beginning execution...

***** Probable Error in the Blitz Code: Illegal instruction - Suspending execution;
 'g' will allow exception to proceed *****
***** PROBLEM INSTRUCTION: Within Function "main" [MyProgram.c]
 00000C4B0: FFFFFFFF # decimal = -1, ascii = "...."
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about commands.

Emulator Reference Manual / Porter	 	 Page of 	102 147

Chapter 4: Errors and Warnings	

E>

However, with the “-nowarn” option, emulation will not halt.	

According to the Blitz ISA, iIllegal instructions cause an “Illegal Instruction
Exception” and cause exception processing to begin. The kernel executes in Kernel
Mode; an illegal instruction in the kernel represents a real problem and the
emulator’s debugger functionality may come in handy. However, User Mode
programs can be expected to occasionally execute illegal instructions from time-to-
time. The Blitz OS kernel code should handle all User Mode exceptions so—
assuming the kernel can handle exceptions correctly—there is no reason to halt
emulation.	

Other errors will cause a message and halt execution regardless of the “-nowarn”
option.	

For example, any attempt to read from uninstalled memory represents a kernel
error and will halt execution. This error should never happen in User Mode code,
since the kernel will presumably map all virtual pages into valid physical memory
pages frames.	

Execution error messages are sent to stderr, not stdout, in case stdout is being
redirected to a file.	

Program Logic Errors	

The emulator contains number of internal consistency checks. If the emulator
detects a problem, you might see this message:	

***** PROGRAM LOGIC ERROR IN BLITZ EMULATOR: <details> *****

For example:	

***** PROGRAM LOGIC ERROR IN BLITZ EMULATOR: mod->moduleNumber != modNum *****

Such messages are sent to stderr, not stdout. After this, the emulator will exit
immediately, with Unix/Linux/POSIX exit code of 1, without attempting to update or
close files.	

Emulator Reference Manual / Porter	 	 Page of 	103 147

Chapter 4: Errors and Warnings	

DIV / REM Implementation Dependencies	

When the DIV and REM instructions involve a negative operands, there can be a
different result, depending on what sort of division is implemented. For example:	

	 x 	 y 	 DIV 	 REM 	 (y * DIV) + REM == x 	
Euclidean:	 -7	 -3	 3	 2	 -3 * 3 + 2 = -7	
Truncated:	 -7	 -3	 2	 -1	 -3 * 2 + -1 = -7	

The Blitz ISA specification leaves the choice open, as an “implementation
dependency”.	

If an attempt is made to execute a DIV or REM instruction where the outcome is
“implementation dependent”, the emulator will print a message and execution will
halt. For example:	

***** Probable Error in the Blitz Code: During a REM instruction, an implementation
 dependency was encountered. The result depends on whether "truncated division" or
 "Euclidean division" is implemented. Truncated assumed. Okay to proceed with 'g'. *****

If the “-nowarn” option is present, the message will not be printed and execution
will not halt.	

Floating Point Dependencies	

According to the Blitz ISA, floating point instructions (such as FADD, FMUL, …) can
either be implemented or cause an “Emulated Instruction Exception”. This is
configurable with the “-fp” command line option.	

If “-fp” is absent, then every floating point instruction will cause an Emulated
Instruction Exception.	

If “-fp” is present, then the emulator will execute the instruction.	

The FMADD, FNMADD, FMSUB, and FNMSUB instructions impose some tricky issues
regarding the proper setting of the overflow, underflow, inexact, and invalid flags.
As of this date, I have not implemented this. Any attempt to executed on of these

Emulator Reference Manual / Porter	 	 Page of 	104 147

Chapter 4: Errors and Warnings	

instructions will issue an “unimplemented code” message and halt execution, unless
“-nowarn” is present. If “-nowarn” is present, execution will continue without
interruption or a message.	

Tight Infinite Loops	

The following is an example of a tight infinite loop:	

LoopLabel:
jump LoopLabel

The emulator will detect such an instruction and immediately halt with a message
like this:	

***** Probable Error in the Blitz Code: A TIGHT INFINITE LOOP WAS DETECTED! *****
***** The jump-to-self instruction:
 LoopLabel:
 00000A248: 19000000 jump LoopLabel # PC + 0x0

If (for some reason) you really want an infinite loop to be executed, you can code this
instead:	

LoopLabel:
nop
jump LoopLabel

The emulator will not recognize this as special and will merrily spin. In that case,
you can use control-C to halt emulation and regain control.	

To debug code using the emulator, it is common to place DEBUG instructions within
your code. Whenever a DEBUG instruction is encountered, the emulator goes into
command mode and you can begin debugging.	

However, when running kernel code, you may want DEBUG and BREAKPOINT
instructions to function normally and cause exceptions (per the Blitz-64 ISA) and
not halt emulation. To do this, you would run the emulator with the -nodebug
option or set the DEBUG_INVOKES_EMULATOR parameter to false.	

Emulator Reference Manual / Porter	 	 Page of 	105 147

Chapter 4: Errors and Warnings	

In such situations, you can use a tight infinite loop check described here to suspend
emulation and regain control.	

Emulator Reference Manual / Porter	 	 Page of 	106 147

Chapter 5: Miscellaneous Instructions	

The SLEEP1 Instruction	

According to the Blitz Instruction Set Architecture (ISA), the SLEEP1 instruction will
place the core in a “sleep state” and suspend instruction execution until an interrupt
is received.	

At this time, the emulator does not implement any sources of external interrupts. At
some future time, we expect inter-core interrupts at a min	

With the emulator, the execution of a SLEEP1 instruction will cause execution of that
core to halt and the status to be changed from RUNNING to SLEEP-1.	

If the emulator is configured with only one core or there are no other RUNNING
cores, all execution will halt and debugging commands will be accepted. If there are
other RUNNING cores, execution will continue with other cores.	

The following message will be printed, unless option “-nowarn” was present on the
command line:	

***** Core N executed a SLEEP1 instruction and has been halted! *****

The SLEEP2 Instruction	

Like SLEEP1, the SLEEP2 instruction will place a core in a “sleep state” and suspend
instruction execution until an interrupt is received. In a hardware implementation,
the power consumption in the two sleep states may be different, with SLEEP2 being
a deeper, lower power version.	

With the emulator, the SLEEP2 instruction will terminate the execution of the
current core and change its status from RUNNING to SLEEP-2.	

Emulator Reference Manual / Porter	 Page of 107 147

Chapter 5: Miscellaneous Instructions	

But there is more. SLEEP2 is used to implement the “EmulatorShutdown” function.
If the emulator is running with “auto-go”, then the emulator itself will terminate. It
will return a Unix/Linux/POSIX return code using the value in register r1.	

For example:	

Shell% blitz MyProgram.exe -g -nowarn

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Shell% echo $?
123
Shell%

If the emulator is not running with “auto-go”, then a message will be printed and the
execution of all cores will be halted. Other cores will keep their status of RUNNING,
but the emulator will begin accept debugging commands. For example:	

Shell% blitz MyProgram.exe
 … startup messages …
E> g
Beginning execution...

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Emulation stopped by SLEEP2 instruction; EXIT CODE: r1 = 123!
***** Core 0 executed a SLEEP2 instruction and has been halted! *****
Done!
E>

The DEBUG Instruction	

According to the Blitz-64 Instruction Set Architecture (ISA), the DEBUG instruction
shall cause a “Debug Exception”.	

The emulator will either process the DEBUG instruction according to the ISA or will
halt execution and enter the emulator’s debugging command mode. This is
controlled by a parameter in the “emulationParms” file:	

DEBUG_INVOKES_EMULATOR 0x0000000000000001

If the value is 1 (i.e., true), the emulator will halt and enter debugging mode. If 0 (i.e.,
false) the emulator will execute the DEBUG instruction according to the ISA and
execution will not be halted.	

Emulator Reference Manual / Porter	 	 Page of 	108 147

Chapter 5: Miscellaneous Instructions	

The default value is 1: the DEBUG instruction will halt execution.	

The DEBUG instruction is conveniently inserted at any point in a KPL program with
the debug statement. The debug statement can optionally be followed by a string:	

 function main ()

 … etc…
 debug

 … etc…
 debug "This is a message"

When the emulator hits the first DEBUG instruction it displays the source line
number where the debug statement occurred, the address in memory, and a
message designed to catch the eye. See highlighting:	

Shell% blitz MyProgram.exe -nowarn

 … etc…
**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 21)
 ---------- ################# DEBUG #################
 00000C510: 00280000 debug
E>

Next, we will continue execution with the “go” command. When the emulator hits
the second DEBUG instruction, it displays the informative message as well:	

E> g

 … etc…
**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 34)
 ---------- ################# This is a message #################
 _Label_44:
 00000C5FC: 00280000 debug
E>

Imagine that you wish to look at the assembly code produced by the KPL compiler
for a particular KPL statement. You will need to take a look at the file produced by
the KPL compiler, which is called “MyProgram.s” in the case.	

Such a file is typically very long. It can be difficult to locate the lines of interest.	

Emulator Reference Manual / Porter	 	 Page of 	109 147

Chapter 5: Miscellaneous Instructions	

However, KPL’s debug statement makes this fairly easy.	

Here is a section of MyProgram.s produced by the KPL compiler. The highlighted
lines came from the first debug statement.	

Argument fileID <-- _P_HostInterface_stdout (8 bytes)
loadd r1,_P_HostInterface_stdout

Call function 'f_print_end'
call _P_PrintPackage_f_print_end
.stmt debug,line=21
.comment "################# DEBUG #################"
debug

FOR STATEMENT...
.stmt for_init,line=22

Calculate and save the FOR-LOOP starting value
.stmt for_init,line=22
movi r7,0
stored 64(sp),r7 # _temp_45

Here is the code for the second debug statement.	

i = i + 1
loadd r7,72(sp) # i
addi r7,r7,1
stored 72(sp),r7 # i
jump _Label_41

END FOR
_Label_44:

.stmt debug,line=34

.comment "################# This is a message #################"
debug

CALL STATEMENT...
.stmt call,line=37

Argument exitCode <-- 123 (8 bytes)
movi r1,123 # 0x000000000000007b

In each case, you see the DEBUG instruction, which causes the emulator to halt
execution. You also see two debugging statements (.stmt and .comment). The
debugging information goes into the executable .exe file and not into memory at
runtime. The emulator will use that debugging information at the time the DEBUG
instruction is encountered.	

All the “###”s are added for the purpose of making the line stand out to the human
eye when scanning a long file or when executing a program containing a lot of
DEBUG instructions.	

Emulator Reference Manual / Porter	 	 Page of 	110 147

Chapter 5: Miscellaneous Instructions	

There is also another aspect to the handling of the DEBUG instruction. Often, the
running Blitz code will detect an error or exception. Generally speaking, the KPL
error handling will throw an “error”n, allowing the running KPL application to catch
the error and deal with it. However, if the error is not caught, the debugger must be
invoked. In this case, code in the System package will execute a DEBUG statement.
However, the location of the error is not within the System package. In this case
there is a bit of coordination between the code in System and the emulator.	

When encountering a DEBUG statement, the emulator checks to see if a particular
DEBUG instruction was executed. In particular, a function called
EmulatorDebuggingRequested (a hand-coded assembly function within
runtime.s) is looked for. This function will leave the address where the error
occurred in register r1. The emulator will retrieve this value and display a message,
as if the error had occurred at given location. This will give the user more
appropriate error reporting.	

This is illustrated in the next example.	

Here, an Arithmetic Exception occurs in a running KPL program. From the
highlighted material, we can see what happened and where in the source code this
happened. Also, noticing that it was a DIV (divide) instruction, we can guess that the
problem was divide-by-zero, although it could be overflow. 	21

E> g
====================
==================== "System: ERROR_ArithmeticException" was thrown but not
==================== caught within thread "Main Thread"
====================

The CATCH STACK is empty

********** RUNTIME ERROR: An "ARITHMETIC EXCEPTION" has occurred! **********

 Offending Instruction = 0x0000000000050767

***** Native debugger is not implemented - EXECUTION TERMINATING *****

********** EMULATOR DEBUGGING: Type 'stack' for more info. **********

Execution is stopped at ASSIGN on line 29 in function "main" [MyProgram.c]
 00000C560: 00050767 div r7,r6,r7
E>

 Dividing the most negative 64 bit integer by -1 results in a positive integer that cannot be 21

represented as a 64-bit signed int.

Emulator Reference Manual / Porter	 	 Page of 	111 147

Chapter 5: Miscellaneous Instructions	

While this gives the programmer a good error message, we can see that execution is
really stopped within the EmulatorDebuggingRequested function:	

E> where
Enter an address in hex (or 0 for current PC):
CURRENT LOCATION OF PC:
 Within Function "EmulatorDebuggingRequested" [runtime.s]
 000018958: 010010FF addi sp,sp,16 # hex = 0x10
E>

By executing the stack command, we see that there was some error handling done
before the DEBUG instruction caused execution to halt and the emulator’s debugging
functions to be invoked. The error actually occurred in the function which is located
just below the top four error handling functions.	

E> stack
 Function/Method Execution at... File
 ============================== ==================== ==============================
 EmulatorDebuggingRequested runtime.s
 invokeDebugger CALL line 2312 System.c
 RuntimeErrorArithmeticExceptio CALL line 2190 System.c
 _runtimeErrorArithmeticExcepti runtime.s
 main ASSIGN line 29 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

 … etc…

Attempting to resume execution at this point is fruitless:	

E> g

==================== KPL PROGRAM TERMINATION ====================
E> g

==================== The KPL program has terminated; you may not continue. ====================
E> where
Enter an address in hex (or 0 for current PC):
CURRENT LOCATION OF PC:
 Within Function "TerminateRuntime" [runtime.s]
 000018978: 19FFFF40 jump TerminateRuntime # PC - 0xC (PC + 0xFFFFFFFF4)
E>

 	
In the future, we anticipate that a native debugger (i.e., a debugger written in KPL
and executing Blitz code) will be invoked instead of relying on the emulator’s
debugging functionality.	

The BREAKPOINT Instruction	

Emulator Reference Manual / Porter	 	 Page of 	112 147

Chapter 5: Miscellaneous Instructions	

Like the DEBUG instruction, the operation of the BREAKPOINT instruction is
controlled by the “DEBUG_INVOKES_EMULATOR” parameter from the
“emulationParms” file.	

DEBUG_INVOKES_EMULATOR 0x0000000000000001

The default value is 1=true.	

If the value is 1=true, execution will halt. There is no special processing or handling
of BREAKPOINT and there is no message. This behavior is used by the KPL runtime
system to simply stop execution.	

If the value is 0=false, execution will continue, and a Breakpoint Exception, as
specified by the Blitz ISA.	

The CONTROL and CONTROLU Instructions	

For a description of the CONTROL and CONTROLU instructions, consult:	

	 “Blitz-64: Instruction Set Architecture Reference Manual”	

The definition, operation, and functionality of these instructions is “implementation
dependent”. The instruction essentially allows the code to provide a 64 bit value and,
after something happens, to receive a 64 bit result. A specific implementation of the
Blitz architecture can use these instructions to perform operations not covered by
the ISA, or these instructions can simply be considered invalid, illegal operations.	

The KPL language provides a way to execute these instructions with two built-in,
predefined functions:	

CPUControl (arg: int, opcode) returns int
CPUControlUserMode (arg: int, opcode) returns int

The “opcode” must be a value within 0 … 65,535. The CONTROL instruction is
privileged so it can only be executed by kernel code, while the CONTROLU
instruction can be executed by User Mode code as well as code running in Kernel
Mode.	

Emulator Reference Manual / Porter	 	 Page of 	113 147

Chapter 5: Miscellaneous Instructions	

These instructions are unimplemented by the emulator. If the emulator encounters
one of these instructions during execution, it will halt and alert the user. For
example, this KPL statement	

i = CPUControl (1234, 57)

will result in this during execution:	

Shell% blitz MyProgram.exe -g -nowarn

 … etc …	
**** A CONTROL (KernelMode) machine instruction was executed *****

 Immed-16 control code: 0x0039 (decimal 57)
 Value in source register: 0x00000000000004D2 (decimal 1234)
 Enter a value in hex: 0x11223344
 Do you want this instruction to cause an Illegal Instruction Exception? n

 … etc …	

Execution will resume.	

In the future, to model specific hardware, it is reasonable to imagine that the
emulator will be modified and that these instructions will perform some hitherto
unknown operations.	

Emulator Reference Manual / Porter	 	 Page of 	114 147

Chapter 6: Memory-Mapped I/O Devices	

Introduction	

A Blitz computer will have several I/O devices and different implementations of the
Blitz architecture may have difference devices.	

The emulator provides the following; others may be added in the future.	

	 BootROM	
	 SecureStorage	
	 SimpleSerial	
	 HostInterface	

These are discussed below.	

The BootROM Area	

The emulator provides an area of memory that is read-only. The location and size of
the ROM is typically:	

Starting Address	 0x4_0000_0000	
Size in Bytes	 0x10_0000 (1 MiByte)	
Size in 16 KiByte Pages	 0x40 (decimal 64)	

However, this can be be adjusted with the following parameters by updating the
“emulationParms” file, shown here with their default values:	

 BOOT_ROM_START_ADDR 0x0000000400000000
 BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040

Emulator Reference Manual / Porter	 Page of 115 147

Chapter 6: Memory-Mapped I/O Devices	

Upon startup or a “reset” command, the emulator will initialize the ROM area with
bytes it reads from the file named: “emulationROM”, or zeros if the file does not
exist.	

Presumably, programs will never attempt to STORE to the ROM area. If an emulated
program tries to STORE into the ROM area, the emulator will print a message and
suspend instruction execution. The STORE will not occur.	

Real Blitz hardware would probably just ignore any STORE attempts into this
address range.	

The user may update the ROM. The executable .exe program loaded upon startup
may include addresses within the ROM. It is not an error and the bytes will
overwrite the initial contents. The user may also use commands such as “setmem”
to update bytes within the ROM area.	

Upon exiting the emulator, if the ROM area has been altered from the initial contents
(either by user commands or executed instructions), the emulator will ask whether
the user wants to write the new ROM contents to the file “emulationROM”.	

E> q
The ROM has been modified. Shall I write it out to the host file ("emulationROM")? y
The "emulationROM" file has been updated.
Shell%

The SecureStorage Area	

The Secure Storage area functions much like the BootROM area, with the following
exceptions.	

The data is kept in a file called “emulationSecure”.	

The location of the Secure Storage is typically:	

Starting Address	 0x4_0010_0000	
Size in Bytes	 0x4000 (16 KiBytes)	
Size in 16 KiByte Pages	 1	

Emulator Reference Manual / Porter	 	 Page of 	116 147

Chapter 6: Memory-Mapped I/O Devices	

The location of the Secure Storage can be changed by modifying the following
emulation parameters, shown here with their default values:	

SECURE_STORAGE_START_ADDR 0x0000000400100000
SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001

Upon startup or a “reset” command, the emulator will initialize the Secure Storage
area with bytes it reads from the file named: “emulationSecure”, or zeros if the file
does not exist.	

The Secure Storage area is either “locked” or “unlocked”, as described in the Blitz
ISA. While unlocked, data can be stored and the new values will be retained, just as
in normal memory.	

Storing into byte 0 of the region will cause the Secure Storage to become locked.
After that, it functions like ROM. Any attempt to STORE into the area is ignored.
Normal programs would be unlikely to do this and the emulator will catch such
errors and halt execution.	

Like the BootROM, the user can update the area using the “setmem” command.
However, the executable .exe file cannot store into the Secure Storage area.	

Like the BootROM, if there have been changes to the Secure Storage area, either from
user commands or executed code, the emulator will ask whether the user wants to
write the new ROM contents to the file “emulationSecure”.	

E> q
The SecureStorage has been modified. Shall I write it out to
 the host file ("emulationSecure")? y
The "emulationSecure" file has been updated.
Shell%

The SimpleSerial Device	

The “Simple Serial” device is intended to provide a simple way for Blitz program to
communicate with the user. It is not intended to model real hardware.	

The location and size of the Simple Serial device is:	

Emulator Reference Manual / Porter	 	 Page of 	117 147

Chapter 6: Memory-Mapped I/O Devices	

Starting Address	 0x4_0010_4000	
Size in Bytes	 0x4000 (16 KiBytes)	
Size in 16 KiByte Pages	 1	

This size is always 16 KiBytes but, the location can be be adjusted with the following
parameter by updating the “emulationParms” file, shown here with the default
value:	

 SIMPLE_SERIAL_START_ADDR 0x0000000400104000

The Simple Serial device is documented in:	

“Blitz-64: Instruction Set Architecture Reference Manual”	

The following two parameters in “emulationParms” apply to the Simple Serial
device. Here they are with their default values:	

IN_RAW_IGNORE_CONTROL_C 0x0000000000000000 (decimal: 0)
TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001 (decimal: 1)

The “IN_RAW_IGNORE_CONTROL_C” parameter must be 0 (i.e., false) or 1 (i.e.,
true). This parameter is only used for input that is coming from stdin when the
emulator is in “raw” mode. (The “serial” command prints out a description of these
modes.)	

Normally, whenever control-C is hit, it will interrupt program execution. Execution
will halt and the user will be able to enter debugging commands. However, some
Blitz programs (e.g., the Blitz OS) may wish to see the control-C directly and, for
example, allow a Blitz shell to interpret it in the same way Linux/Unix shells do. So
the emulator must not stop execution.	

By setting the “IN_RAW_IGNORE_CONTROL_C” parameter to 1 (true), any control-C
being pressed by the user will be forwarded to the running Blitz core. The Blitz
program will not be interrupted.	

The “TRANSLATE_INPUT_CR_TO_NL” parameter must be 0 (i.e., false) or 1 (i.e.,
true). This parameter is only used for when the emulator is in “raw” mode; it has no
effect when running in “cooked” mode.	

Emulator Reference Manual / Porter	 	 Page of 	118 147

Chapter 6: Memory-Mapped I/O Devices	

Some host systems (like Apple macOS) will treat the ENTER key as \r, and not \n. 22

So, in raw mode, macOS delivers the ‘\r’ character (ASCII 0x0d) and not ‘\n’ (ASCII
0x0a), which will confuse a Blitz program using the Unix/Linux/POSIX convention.
When this parameter is set to true, the emulator will translate every ‘\r’ it sees into
‘\n’.	

The HostInterface Device	

The location and size of the HostInterface device is:	

Starting Address	 0x4_0010_8000	
Size in Bytes	 0x4000 (16 KiBytes)	
Size in 16 KiByte Pages	 1	

This size is always 16 KiBytes but, the location can be be adjusted with the following
parameter by updating the “emulationParms” file, shown here with the default
value:	

 HOST_DEVICE_START_ADDR 0x0000000400108000

This is a memory-mapped I/O device that facilitates communication with the host
OS running this emulator.	

In particular, this “device” allows a running Blitz program to:	

	 • Perform file operations (fopen, fgetc, …) 	
	 • Retrieve the command line arguments	
	 • Determine the date and time	

Consult the HostInterface package. The functionality of the HostInterface device is
encapsulated in a number of useful functions, such as:	

hostArgs () returns String
hostDate () returns String
fopen (filename: String, mode: String) returns ptr to FILE
fclose (fileID: ptr to FILE)
remove (filename: String) returns int
feof (fileID: ptr to FILE) returns bool

 On my Mac, the key is actually labeled RETURN, not ENTER.22

Emulator Reference Manual / Porter	 	 Page of 	119 147

Chapter 6: Memory-Mapped I/O Devices	

fgetc (fileID: ptr to FILE) returns int
fputc (ch: int, fileID: ptr to FILE) returns int
ungetc (ch: int, fileID: ptr to FILE)
perror (str: String)
fread1 (buffPtr: ptr to void, byteCount: int, fileID: ptr to FILE) returns int
fwrite1 (buffPtr: ptr to void, byteCount: int, fileID: ptr to FILE) returns int
fseek (fileID: ptr to FILE, offset: int, whence: int)
ftell (fileID: ptr to FILE) returns int
fputs (src: String, fileID: ptr to FILE) returns bool

Commentary This device is obviously not intended to model any real I/O device.
Instead, it is used to allow KPL application code to be developed. In particular, the
Blitz assembler and KPL compiler were re-coded in KPL in anticipation of there
existing a Blitz OS in the future. This was done to verify that the Blitz toolchain
was robust and up to the task of developing the Blitz OS. In order to verify that
these KPL programs were working exactly identically to the host C/C++ versions,
it was necessary to run the full verification suites against them. The functionality
provided by the HostInterface device is essentially the minimum required to
enable the KPL versions of the assembler and compiler to function.	

Using the HostInterface device, Blitz code running within this emulator can
communicate with the underlying host operating system (e.g., Unix). This allows
Blitz code to do things like read files and perform system calls (e.g., to get the time of
day).	

This is done by creating a phony device called the “HostInterface Device” which is
memory-mapped like all Blitz I/O devices. LOADs and STOREs to this device will
cause the emulator to communicate with the hist OS. Arguments to a host system
call can be transferred by the Blitz code by STOREing to this “device”. Results from
the host OS can be retrieved by the Blitz code by LOADing from this “device”.	

Here are the key addresses within the HostInterface device. Although these are often
called “I/O registers” they are locations in the Memory-Mapped I/O region and not
the sort of registers found in a CPU core.	

Register name	 offset	 size (bytes)	 	
ARG_SIZE	 0	 8	 read only	
ARG_CHAR	 8	 8	 read only	
DATE_SIZE	 16	 8	 read only	
DATE_CHAR	 24	 8	 read only	
FUN_CODE	 32	 8	 write only	
ARG_1	 40	 8	 write only	

Emulator Reference Manual / Porter	 	 Page of 	120 147

Chapter 6: Memory-Mapped I/O Devices	

ARG_2	 48	 8	 write only	
ARG_3	 56	 8	 write only	
ARG_4	 64	 8	 write only	
Ret_Val	 72	 8	 read only	
DO_IT	 80	 8	 read only	
LONG_STR	 80	 1024	 write only	

Here is how they are used:	

ARG_SIZE	
Command line arguments to the emulator are given on the emulator command
line with the “-args” option. The -args is followed by a argumentString. For
example:	

Shell% blitz MyProgram.exe -g -args "-aaa -bbb -ccc"

Read this register to find the length in bytes of argumentString. In this
example, the length of the string “-aaa -bbb -ccc” is 14 bytes. Reading
this register also resets the current position for ARG_CHAR to the beginning of
the string.	

ARG_CHAR	
Read this register to fetch the next byte in argumentString. Each byte is
returned as an int (0..255) since this register is 8 bytes. In our example, to
obtain all the bytes of the argumentsString, we would read this register 14
times. For any read beyond the end of the string, zeros will be returned.	

DATE_SIZE	
DATE_CHAR	
Reading the DATE_SIZE register will cause the time and date to be obtained
from the host and stored for subsequent retrieval by the Blitz code. The time
and date will be in the form shown by this example:	

"Sat May 22 09:44:18 2021\n"

A read to the DATE_SIZE register will (1) obtain and store the time and date
from the host, (2) reset the current position to the beginning of the string, and
(3) return the number of characters in the string.	

Emulator Reference Manual / Porter	 	 Page of 	121 147

Chapter 6: Memory-Mapped I/O Devices	

To retrieve the characters, the Blitz code can read the DATE_CHAR register
repeatedly, once for each character in the string. Each successive read will
return each successive character. After each read, the current position is
advanced. For any read beyond the end of the string, zeros will be returned.	

FUN_CODE	
In order to make a function call to the host operating system—that is, to
perform a host operation—write to this register, storing a functionCode in it.
This functionCode is a small integer that will identify which host operation is
to be performed. Then write to the ARG_N registers to store arguments to the
call. Finally, to actually make the call, read from register DO_IT.	

ARG_1	
ARG_2	
ARG_3	
ARG_4	
These registers are used to pass argument values to a host system call. Store
the argument value in them before making the call with DO_IT. There is
accommodation for up to 4 arguments.	

The LONG_STR register also functions as an argument register in the same
way and should be written before an fopen operation.	

Ret_Val	
If the host operation returns a value, it will be placed in this register. Read this
register to retrieve it. Here are the operations that return a value:	

operation	 returned value	
fopen	 fileNumber	
feof	 boolean	
fgetc	 character	
fread1	 count read	
fwrite1	 count written	

DO_IT	
This register is used to perform the host operation. The act of reading this
register will cause a host OS operation to occur. The operation will be
determined by FUN_CODE, ARG_1 ... ARG_4. Any retuned value will be placed
in Ret_Val.	

Emulator Reference Manual / Porter	 	 Page of 	122 147

Chapter 6: Memory-Mapped I/O Devices	

The value returned from reading this register will be an error code with the
standard Unix/Linux/POSIX meanings, i.e., that value of “errno” from the host.
Here are the most common codes:	

Value	 Name	 Meaning	
0	 OK	 No error	
1	 EPERM	 Operation not permitted	
2	 ENOENT	 No such file or directory	
5	 EIO	 Input/output error	
9	 EBADF	 Bad file descriptor	
12	 ENOMEM	 Cannot allocate memory	
13	 EACCES	 Permission denied	
14	 EFAULT	 Bad address (invalid address in attempting

to use an argument of a call)	
17	 EEXIST	 File already exists	
22	 EINVAL	 Invalid argument	
24	 EMFILE	 Too many open files	
63	 ENAMETOOLONG	 File name too long. A component of a path

name exceeded 255 characters.	

Note: DO_IT always returns a value, and it is often “0=OK”. In Unix/Linux/
POSIX, the errno value is often unchanged if there is no error. This requires the
programmer to set it to zero ahead of time, but this is not required here.	

Notes: 	23

EINVAL	 Includes “bad whence” (fseek), “bad mode” (fopen)	
EBADF	 Not an open file, or not open for writing	
EACCES	 The requested access to the file is not allowed, or

search permission is denied for one of the directories
in the path prefix of pathname, or the file did not exist
yet and write access to the parent directory is not
allowed.	

ENAMETOOLONG	 A component of a path name exceeded 255 characters.	

Note: The HostInterface package provides a function “perror” which prints
the typical Unix/Linux/POSIX messages, at least for the error codes listed
above.	

 From the Linux/POSIX online documentation.23

Emulator Reference Manual / Porter	 	 Page of 	123 147

Chapter 6: Memory-Mapped I/O Devices	

LONG_STR 	
This “register” consists of a sequence of 1,024 bytes. A filename can be 24

stored into these bytes. The fopen operation will use this name.	

Here are the host operation that can be performed. For more info, consult the Unix/
Linux/POSIX documentation.	

FUN_CODE	 Operation	 Arguments	
1	 fopen	 arg1: ptr to KPL array of byte	
	 	 arg2: mode (see below)	
	 	 returns: fileNumber	
2	 fclose 	 arg1: fileNumber	
3	 feof	 arg1: fileNumber	
	 	 returns: bool 1=true=EOF	
4	 fgetc	 arg1: fileNumber	
	 	 returns: char (0 … 255, -1 = EOF)	
5	 ungetc	 arg1: int	
	 	 arg2: fileNumber	
6	 fgets	 arg1: address	
	 	 arg2: fileNumber	
7	 fread1	 arg1: address	
	 	 arg2: byteCount	
	 	 arg3: fileNumber	
	 	 returns: bytecount successfully read	
8	 fwrite1	 arg1: address	
	 	 arg2: byteCount	
	 	 arg3: fileNumber	
	 	 returns: bytecount successfully written	
9	 fseek	 arg1: fileNumber	
	 	 arg2: offset	
	 	 arg3: whence	
 	 1=SEEK_SET, 2=SEEK_CUR, 3=SEEK_END	

10	 fgetc	 arg1: fileNumber	
	 	 returns: int	

Note: For the mode argument to fopen:	
“r”	 File must exist; position at beginning; Reading only.	
“r+”	 File must exist; position at beginning; Both reading & writing allowed.	

 See the emulator constant “HOST_DEVICE_BUFFER_SIZE”.24

Emulator Reference Manual / Porter	 	 Page of 	124 147

Chapter 6: Memory-Mapped I/O Devices	

“w”	 Create file or truncate to zero length; Writing only.	
“w+”	 Create file or truncate to zero length; Both reading & writing allowed.	
“a”	 Create file if necessary, otherwise position at file end; Writing only.	
“a+”	 Create file if necessary, otherwise position at file end; Both reading &

writing. (Note with "a+": Check host differences on initial position for
reading.)	

Note: The fread1 and fwrite1 operations access a range of bytes in memory. This is
the buffer that holds data that is read or written. This buffer may be in virtual
memory and will undergo the usual TLB memory mapping. However, accessing the
buffer could cause an exception. These operations will perform TLB mapping, but if
a TLB exception occurs, the data transfer will be cut short. These operations are
named fread1 and fwrite1 (instead of fread and fwrite) to emphasize this
difference from the host operations.	

Other Devices	

At this date, these are the only memory-mapped I/O devices implemented by the
emulator.	

Emulator Reference Manual / Porter	 	 Page of 	125 147

Chapter 7: Porting and Host Issues	

Command Line Options	

The Blitz emulator is a Unix/Linux/POSIX tool run from the command line. Here are
the command line options:	

filename	
The input executable file, which will be loaded into memory. This is optional; if
missing, nothing will be loaded and main memory will contain zeros.	

-h	
Print help info about the command line options. Ignore other options and exit.	

-g	
This is the “auto-go” option. Automatically begin emulation of the executable
program immediately, bypassing the command line interface.	

-i filename	
File to get serial input from. If missing, stdin will be used.	

-o filename	
File to send serial output to. If missing, stdout will be used.	

-raw	
Places the serial input device in “raw” mode; the default is “cooked” mode. In
cooked mode, keystrokes are echoed, backspaces are processed, etc. by the
host, relieving the Blitz code is relieved from this task. In raw mode, the
running BLITZ code must echo keystrokes, process backspaces, etc.	

-nowarn	
By default, some potential program execution problems will be flagged and
instruction execution will be suspended. This option suppresses this, as well
as several informational messages the emulator would otherwise display.	

Emulator Reference Manual / Porter	 Page of 126 147

Chapter 7: Porting and Host Issues	

-fp	
By default, all floating point instructions will cause an Emulation Exception.
This option (fp = “floating present”) will cause these instructions to be
executed.	

-nodebug	
Normally the DEBUG instruction will cause a halt to emulation and the
emulation debugger will be invoked. With this option, the instruction will
cause a Debug Exception and emulation will not be suspended. (This can also
be accomplished with the DEBUG_INVOKES_EMULATOR=0 emulation
parameter. If both “-nodebug” and DEBUG_INVOKES_EMULATOR=1 are
present, the command option prevails: the instruction will cause an Exception
and emulation will continue.) The BREAKPOINT instruction is treated the
same way.	

-startall	
By default in a multicore Blitz system, only core 0 will run. The remaining
cores will be stopped. This option causes all cores to be placed in RUNNING
mode. The default is determined by the setting of the START_ALL_CORES
emulation parameter. If both “-startall” and START_ALL_CORES=0 are present,
the command line option prevails: All cores will be RUNNING.	

-args string	
This is used to pass command line arguments to the running program. For
example:	

blitz MyProgram.exe -g —args "-stack -xxx -o myFile.o"

Development on Apple macOS	

The Blitz emulator was developed and runs under Apple macOS, which is a POSIX-
compliant implementation of Unix. The following well-known tools were used:	

gcc	
make	
shells: csh, sh	
TextEdit	
Terminal	

Emulator Reference Manual / Porter	 	 Page of 	127 147

Chapter 7: Porting and Host Issues	

All editing was done with Apple’s TextEdit, which is quite simple and well-designed.
Apple’s Terminal app is used to run the shell . I happen to use the csh shell, but the 25

testing suite use scripts that begin with:	

#!/bin/sh

In addition, the following Blitz tools are used:	

asm	
link	
kpl	

A few other Blitz tools are occasionally helpful: hexdump, dumpobj, and hexify.	

The emulator is compiled with these options:	

gcc -g -std=c99 -Wall -O2 …

This invokes the clang compiler . The Xcode IDE (integrated development 26

environment) was not used. 	27

The emulator consists of the following files:	

File	 Lines of code	
CheckHostCompatibility.c 937
BlitzSupport.c 1,023
BlitzSupport2.c 508
blitz.c 14,676

Total 17,144

The following #include files are used:	

 Here are some of the Terminal settings I use: Profiles>>Advanced>>Declare terminal as 25

xterm-256color,Delete sends Control-H,; Text encoding UTF-8; Profiles>>Text>>Menlo Regular14.

 More precisely clang version 12.0.0 (clang-1200.0.32.29) with target x86_64-apple-26

darwin20.4.0, as of this date.

 I believe the clang/gcc toolchain is distributed as part of Xcode, but may also be downloaded 27

separately.

Emulator Reference Manual / Porter	 	 Page of 	128 147

Chapter 7: Porting and Host Issues	

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <signal.h>
#include <time.h>
#include <fenv.h>

The makefile will execute the following commands:	

gcc -g -std=c99 -Wall -DBLITZ_HOST_IS_LITTLE_ENDIAN \
 -DWithoutOpt CheckHostCompatibility.c -S \
 -o CheckHostCompatibility1.s
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \
 -DWithOpt CheckHostCompatibility.c -S \
 -o CheckHostCompatibility2.s
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN blitz.c -S
gcc blitz.s CheckHostCompatibility1.s CheckHostCompatibility2.s \
 -lm -o blitz

CheckHostCompatibility.c contains a function that is called upon startup to verify
the host computer will perform as expected. The emulator is compiled with “-O2”
optimization, which will, at compile-time, modify or eliminate many of the
operations performed in CheckHostCompatibility. Therefore,
CheckHostCompatibility.c is compiled both with and without -O2 optimization and
invoked both ways, in order to catch any problems.	

The files BlitzSupport.c and BlitzSupport2.c are incorporated with #include . 28

These files are used in other Blitz tools, including the KPL compiler. The file
BlitzSupport.c contains material that is only for C programs while BlitzSupport2.c
contains material that is used in both C and C++ programs.	

Host Compatibility: Porting to Windows, Linux	

 Convention is flouted by using “.c” instead of “.h” as an extension.28

Emulator Reference Manual / Porter	 	 Page of 	129 147

Chapter 7: Porting and Host Issues	

The Blitz-64 tools have not (yet!) been ported to Windows or Linux, but I think this
should be reasonably straightforward.	

Here are the areas of concern:	

BigEndian / LittleEndian	

Blitz is “Big Endian”, and the tools run on the Mac, which is a x86-64 “Little Endian"
architecture. Linux often runs on ARM, which is also Little Endian, so ARM-based
hosts should not present a problem, but see the section on “Floating Point
Endianness on ARM”.	

Porting to a Big Endian host, may require changes. The code contains macros to
swap bytes, so in theory no changes will be required. In any case, the test suites
should uncover any and all problems.	

Floating Point Endianness on ARM	

The ARM processor stores double precision floating point numbers differently than
X86-64. The two 32-bit words are stored in Little Endian order, but in ARM, the most
significant word is first, while in x86-64, the least significant word is first.	

This will require changes in porting the Blitz tools to an ARM-based computer. The
test suites should uncover any and all problems.	

Apparently Apple is planning to use ARM cores in its laptops, which will necessitate
dealing with this.	

C / C++ Compiler	

The emulator was compiled with C99 using clang. The -Wall option was used and no
issues are flagged. The emulator should compile using a different compiler, without
too much difficulty.	

POSIX on Linux	

The emulator was developed on Apple macOS, which is POSIX-compliant and thus
can correctly be called a “Unix” system.	

Emulator Reference Manual / Porter	 	 Page of 	130 147

Chapter 7: Porting and Host Issues	

When porting the Blitz tools to Linux, I don’t foresee a lot of problems since most
Linux systems are either POSIX-certified, or at least POSIX-compliant. There is no
use of threads and most of the interface to the host OS is pretty standard.	

The big issue with Linux is likely to be that many Linux machines use ARM
processors. See the section above on “Floating Point Endianness on ARM”.	

POSIX on Windows	

There are POSIX packages for Windows, such as Cygwin and Windows Subsystem
for Linux (WSL). To port BLITZ-64 to Windows, one of these will be needed. This
should be workable, but porting may present some surprises.	

Host Interface	

The interface with the host OS can be broken into these areas:	

Argument processing (argc, argv)	
Memory allocation (calloc)	
Termination (exit)	
File services (fopen, fgetc, fflush, perror, …)	
Time services (ctime)	
Double precision (feclearexcept, fetestexcept)	
Control-C handling (signal, SIGINT) 	
Raw/Cooked input (system, stty)	

The last items are most likely to cause porting issues.	

Integer Division	

The CheckHostCompatibility function will verify that the host integer division
operation implements “truncated division”. For a host processor where this is not
the case, changes will be needed.	

Floating Point Rounding	

Presumably the host implements the IEEE-754 standard, with the default rounding
mode being “round-to-nearest-with-ties-to-even”.	

Emulator Reference Manual / Porter	 	 Page of 	131 147

Chapter 7: Porting and Host Issues	

However, if the host processor performs rounding or sets the floating point
exception flags (NV-invalid, NX-inexact, OF-overflow, UF-underflow, DZ-divide-by-
zero) in an unexpected way, this should be detected when running the KPL
“execution” test suite or the “NumberTest” KPL program.	

Emulator Reference Manual / Porter	 	 Page of 	132 147

Chapter 8: BlitzHEX1, BlitzHEX2, and
Hexify	

Quick Summary	

• Two file formats are described: BlitzHEX1 and BlitzHEX2.	
• The content of these file types is simple:	
	 — Load address	
	 — Entry point	
	 — Bytecount	
	 — The bytes to be loaded	
• The information content of the two formats is identical.	
	 — A BlitzHEX2 (.bhex2) file is ASCII and human-readable.	
	 — A BlitzHEX1 (.bhex1) file is binary and about half the size.	
• The file can be loaded and executed as-is.	
• This format can be used for memory dumps (image files).	
• The hexify tool is described.	
	 — Input: An object (.o) or executable (.exe) file.	
	 — Output: Either format can be produced.	
• These file formats are intended to support hardware development.	
• The emulator recognizes these file formats.	

Introduction	

Normally, a program will be assembled to produce an object (.o) file. Then, one or
more object files will be linked to produce an executable (.exe) file. The executable
file can be loaded in to memory and executed, either by the emulator or a running
Blitz OS.	

If this is what you are doing, then you can skip this chapter. However, if you are
developing hardware, it may be necessary to work directly with the data bytes. The

Emulator Reference Manual / Porter	 Page of 133 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

formats of object (.o) and executable (.exe) files are complex. The formats present
here are much simpler and the hexify tool is designed to simplify your life.	

To capture a memory image, a simple file format is introduced here. In general,
memory image files are called “BlitzHEX” files, but there are two specific file formats
introduced here, called “BlitzHEX1” and “BlitzHEX2”. Both file formats carry exactly
the same information and you can use whichever format is most convenient.	

Files in the BlitzHEX1 format are given an extension of .bhex1 and files in the
BlitzHEX2 format are given an extension of .bhex2.	

In a BlitzHEX1 file, all values are in binary. Thus, a 64 bit doubleword requires 8
bytes in the file.	

In a BlitzHEX2 file, all values are expressed in hex with ASCII characters and each is
placed on a separate line. Thus, a 64 bit doubleword requires 17 bytes in the file (16
hex characters, plus a \n NEWLINE character).	

A BlitzHEX2 file is human readable, while a BlitzHEX1 is not so easily read.
Although a BlitzHEX2 file is a text file that can be easily viewed, it contains nothing
but hex values, so it may not be easily understood.	

	 BlitzHEX1 — Benefit: The file size is smaller, about half the size.	
	 BlitzHEX2 — Benefit: The file is a human-readable text file.	

Each file contains the following information:	

	 • Load address	
	 • Entry point	
	 • Byte count	
	 • Data Checksum	
	 • Header Checksum	
	 • Data bytes	

Both a BlitzHEX1 and BlitzHEX2 file begin with a “magic number”.	

The first 8 bytes of a BlitzHEX1 file will be:	

	 In Binary	 In ASCII	
426c747a48455831 BltzHEX1

Emulator Reference Manual / Porter	 	 Page of 	134 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

 The first 8 bytes of a BlitzHEX2 file will be:	

	 In Binary	 In ASCII	
426c747a48455832 BltzHEX2

Any program accepting a BlitzHEX file will first read the first 8 bytes to determine
which format the remainder of the file is in.	

A BlitzHEX file can be viewed as a program that is to be executed. The idea is that the
data bytes should be loaded into memory at the load address. The byte count tells
how many data bytes are present in the file. The program can be executed by
jumping to the entry address. The checksums can be used (if desired) to make
sure that no data corruption has occurred.	

The file can also be viewed as a memory dump (or “image”) of memory, possible
captured after some program crashed. The load address and the byte count
describe which region of memory has been captured. The data bytes contain the
data copied from memory. The entry address is not needed and a value of -1
indicates that the entry address is missing.	

There are two ways to create a BlitzHEX file.	

In the first approach, the user will create a simple assembly program. This program
must be stand-alone, in the sense that it does not need to be linked. Then, the hexify
tool is used. The assembler produces an object (.o) file and the hexify tool can read
such a file. The tool will then produce the BlitzHEX file as its output. Of course the
hexify tool will verify that the object (.o) file meets certain requirements and does
not need to be linked.	

The second approach accommodates larger and more complex programs. The
program may consist of a number of modules — both compiled KPL packages and
hand-coded assembly files — which are assembled and then linked to produce an
executable. After linking, the hexify tool is used. The linker produces an executable
(.exe) file and the hexify tool can read such a file. The hexify tool will then produce
the BlitzHEX file as its output.	

Normally, the emulator will be used with the name of an executable (.exe) file on the
command line, but the emulator will accept files in the BlitzHEX1 and BlitzHEX2
format as well. For example:	

Emulator Reference Manual / Porter	 	 Page of 	135 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

Shell% blitz MyExamplePgm.bhex1 -g
Reading executable file...
Executable file is a "BlitzHEX1" format file...
 Load Address: 0x000001208
 Entry Point: 0x000001210
 Byte Count: 0x000000220
Beginning execution...

The emulator will load the data bytes into memory. If the region of memory is
private memory and there are multiple cores, then a copy of the data will be loaded
into the private memory of each core. If the region of memory is shared memory,
then the data bytes will of course be available to all cores. If the region is in the ROM
Memory-Mapped I/O pages, then the data bytes will be loaded in to the ROM. All
cores share the same ROM data. The EntryPoint will be stored in the Program
Counter (PC) of each core.	

In this chapter, we specify the file formats more precisely and discuss the hexify
tool.	

BlitzHEX1 File Format	

This is a binary file with an extension of “.bhex1”.	

The file consists of a sequence of doublewords, where each doubleword is given in
binary, with 8 bytes. The file contains:	

bytes	 value 	 description	

8	 426c747a48455831	 “BltzHEX1” in ASCII	
8	 2a2a2a2a2a2a2a2a	 “********” in ASCII	
8	 LoadAddress	 where in memory to place data (multiple of 8)	
8	 EntryPoint	 where to begin execution (multiple of 8)	
	 	 	 -1 if EntryPoint is missing	
8	 ByteCount	 N = number of data bytes (multiple of 8)	
8	 DataChecksum	 Logical XOR of all data doublewords	
8	 HeaderChecksum	 Logical XOR of LoadAddress, EntryPoint,	
	 	 	 ByteCount, and DataChecksum	
8	 2a2a2a2a2a2a2a2a	 “********” in ASCII	
N	 Data	 N bytes; N will be a multiple of 8	

Emulator Reference Manual / Porter	 	 Page of 	136 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

8	 2a2a2a2a2a2a2a2a	 “********” in ASCII	

A separator consists of 8 bytes giving the ASCII codes for “********”, that is, the
value 0x2a2a2a2a2a2a2a2a. The file contains three separators which serve to make
sure there are no errors in the interpretation of the file. 	

The LoadAddress and the EntryPoint must be valid Blitz addresses, which means a
36-bit value, i.e., within	

	 0x0000_0000_0000_0000 … 0x0000_000F_FFFF_FFFF	

Furthermore, they must be doubleword aligned and must not be zero, since any
attempt to access memory bytes below 0x0_0000_0008 will cause a Null Address
Exception.	

The ByteCount must be a number evenly divisible by 8. It is considered an error if 29

LoadAddress + ByteCount exceeds the maximum address. 	30

The EntryPoint must line within the memory region described by LoadAddress
and ByteCount.	

An EntryPoint value of -1 is also allowed. This value means default/missing/not-
applicable.	

The DataChecksum is a 64 bit value that is produced by Exclusive-ORing (XOR) all
of the data doublewords together.	

The HeaderChecksum is a 64 bit value that is produced by Exclusive-ORing (XOR)
the following doublewords together:	

	 LoadAddress	
	 EntryPOint	
	 ByteCount	
	 DataChecksum	

 If the desired number of bytes is not an even multiple of 8, the ByteCount must be rounded up 29

to the next multiple and zeros must be added to the data bytes to bring the data up to an integral
number of doublewords. Likewise, if the desired starting address is not doubleword aligned,
LoadAddress must be adjusted accordingly. In practice, these exceptions do not arise.

 More precisely, LoadAddress + ByteCount must be 0x0000_0010_0000_0000 or less. 30

Emulator Reference Manual / Porter	 	 Page of 	137 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

The Data region of the file consists of an integral number of doublewords, of the size
indicated by ByteCount.	

Here is an example of a file in BlitzHEX1 format:	

Shell% hexdump example.bhex1
000000000: 426C 747A 4845 5831 2A2A 2A2A 2A2A 2A2A BltzHEX1********
000000010: 0000 0000 0000 0008 0000 0000 0000 0010
000000020: 0000 0000 0000 0020 9A70 214B 2266 11DD p!K"f..
000000030: 9A70 214B 2266 11E5 2A2A 2A2A 2A2A 2A2A .p!K"f..********
000000040: 1122 3344 5566 7788 8877 6655 4433 2211 ."3DUfw..wfUD3".
000000050: 1111 2222 3333 4444 1234 5678 0000 0000 ..""33DD.4Vx....
000000060: 2A2A 2A2A 2A2A 2A2A ********
Shell%

BlitzHEX2 File Format	

A file in the BlitzHEX2 format is an ASCII text file with an extension of “.bhex2”.	

The file consists of a sequence of lines, where each line contains ASCII characters
followed by a NEWLINE. Like any text file, the file can be printed.	

Here is an example of a BlitzHEX2 file, originating from the same source as the
BlitzHEX1 example above and containing the same information:	

BltzHEX2

0000000000000008
0000000000000010
0000000000000020
9a70214b226611dd
9a70214b226611e5

1122334455667788
8877665544332211
1111222233334444
1234567800000000

Emulator Reference Manual / Porter	 	 Page of 	138 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

In a BlitzHEX2 file, each line contains only ASCII characters. Each line is terminated
with a NEWLINE . Each line — other that the first line and the three “********” 31

separators — contains exactly 16 hex characters and specifies a 64-bit doubleword
value. The file must contain no spaces or tabs.	

Regardless of whether the file is in BlitzHEX1 or BlitzHEX2 format, the exact same
information is conveyed. Files in BlitzHEX1 format are smaller — about half the size
— and files in BlitzHEX2 format are easier for the human to read.	

Below we show this file in another way to see the actual bytes, but you can see that
printing it as a text file (as above) is clearly preferable.	

Shell% hexdump example.bhex2
000000000: 426C 747A 4845 5832 0A2A 2A2A 2A2A 2A2A BltzHEX2.*******
000000010: 2A0A 3030 3030 3030 3030 3030 3030 3030 *.00000000000000
000000020: 3038 0A30 3030 3030 3030 3030 3030 3030 08.0000000000000
000000030: 3031 300A 3030 3030 3030 3030 3030 3030 010.000000000000
000000040: 3030 3230 0A39 6137 3032 3134 6232 3236 0020.9a70214b226
000000050: 3631 3164 640A 3961 3730 3231 3462 3232 611dd.9a70214b22
000000060: 3636 3131 6535 0A2A 2A2A 2A2A 2A2A 2A0A 6611e5.********.
000000070: 3131 3232 3333 3434 3535 3636 3737 3838 1122334455667788
000000080: 0A38 3837 3736 3635 3534 3433 3332 3231 .887766554433221
000000090: 310A 3131 3131 3232 3232 3333 3333 3434 1.11112222333344
0000000a0: 3434 0A31 3233 3435 3637 3830 3030 3030 44.1234567800000
0000000b0: 3030 300A 2A2A 2A2A 2A2A 2A2A 0A 000.********.
Shell%

To be more precise, every BlitzHEX2 file has the following format:	

	 • “BltzHEX2”	 — 8 characters (ASCII: 42_6c_74_7a_48_45_58_32)	
	 • “********”	 — Separator	
	 • LoadAddress	 — 16 characters, 0 … 0000000FFFFFFFFF (multiple of 8)	
	 • Entrypoint	 — 16 characters, 0 … 0000000FFFFFFFFF (multiple of 8)	
	 	 	 FFFFFFFFFFFFFFFF if EntryPoint is missing	
	 • ByteCount	 — 16 chars, N = number of data bytes (multiple of 8)	
	 • DataChecksum	 — 16 chars, Logical XOR of all data doublewords	
	 • HeaderChecksum	 — 16 chars, Logical XOR of LoadAddress, EntryPoint,	

	 	 ByteCount, and DataChecksum	
	 • “********”	 — Separator	
	 • Data	 — Each line contains 16 hex chars, i.e., a doubleword	

 Normally, the END-OF-LINE will be \n, but the hexify tool allows the END-OF-LINE to be \r, \n\r, 31

or \r\n instead.

Emulator Reference Manual / Porter	 	 Page of 	139 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

	 • “********”	 — Separator	

The fields are discussed in the section describing the BlitzHEX1 format. The same
comments apply to files in the BlitzHEX2 format.	

The hex characters may be lower or upper case.	

Hexify	

The tool hexify is a simple program that can be used to convert the format of a file.
The input file can be in either of these formats:	

	 • Object file (.o)	
	 • Executable file (.exe)	

The output from the tool will be in one of these formats:	

	 • BlitzHEX1 format	
	 • BlitzHEX2 format	
	 • “Hex” format	
	 • “Hex2” format	
	 • System Verilog statements	

The hexify tool determines the format of the input file by first reading its “magic
number”. The format of the output file is determined by a command line option.	

The input comes either from stdin or from a file which is named on the command
line.	

Exactly one of the following command line options must appear:	

	 option	 output file format	
	 -bhex1	 BlitzHEX1 format	
	 -bhex2	 BlitzHEX2 format	
	 -hex	 “Hex” format	
	 -hex2	 “Hex2” format	
	 -sv	 System Verilog statements	

Emulator Reference Manual / Porter	 	 Page of 	140 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

The output will go to stdout.	

The hexify program performs error checking on the input and will print warnings or
error messages. It will also print general information about the file	

Here is an example usage:	

Shell% hexify baby.o -bhex2 > example.bhex2
The input is a ".o" file...
 ISA Version: 1
 .o Version: 1
 Number of Segments: 1
 Number of Symbols: 3
 Source Filename: baby.s
 Line number: 7
 Initial Length: 0x00000001c
 Status: Kernel Mode, executable, writable, not zero-filled
 Reg gp value: <undefined>
 Lowest Address: 0x000000008
 Highest Address: 0x000000027
 Size in bytes: 0x000000020 (decimal 32)
 Entrypoint: 0x000000010
Computing checksums...
 Checksum 8 = 0x08
 Checksum 64 = 0x9a70214b226611dd
Producing BlitzHEX output...
Shell%

Here is a summary of the command line options:	

filename
The input will come from this file. If a file is not given on	
the command line, the input will come from stdin. Only one input	
file is allowed and it should be in ".o" or ".exe" format.	

-hex
Produce output file in hex file format.	

-hex2
Produce output file in hex2 file format.	

-bhex1
Produce output file in BlitzHEX1 format (Binary).	

-bhex2
Produce output file in BlitzHEX2 format (ASCII).	

-sv
Produce output file as System Verilog statements.	

-silent

Emulator Reference Manual / Porter	 	 Page of 	141 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

Suppress informational output.	
-nowarn
Suppress warning output.	

-bigok
For really large files, keep going and do not abort.	

-r
End each output line with \r. The default is \n.	

-nr
End each output line with \n\r. The default is \n.	

-rn
End each output line with \r\n. The default is \n.	

-h
Print this help info, ignore other options, and terminate.	

All warnings, errors, and informational output are directed to stderr. If there is an
error, the program will terminate with an exit code of 1.	

The -silent option causes the tool to suppress all informational output. For example:	

Shell% hexify baby.o -bhex2 -silent > example.bhex2
Shell%

The -nowarn option causes the tool to suppress all warnings.	

If the ByteCount is really large, then hexify will abort with an error. The -bigok
option will suppress this check. (The limit is set at 10,000,000 bytes.)	

Blitz follows the Unix/Linux/POSIX conventions and lines in a text file end with the
\n character (0x0a). However, for FPGA development, it may be necessary to an OS
with a different convention. By default, hexify uses a “\n” for END-OF-LINE. This can
be switched by specifying -r, -rn, or -nr on the command line.	

The -h option is provided for forgetful users and will print out a short summary of 32

which options do what. 	

Input Requirements	

 Me.32

Emulator Reference Manual / Porter	 	 Page of 	142 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

Object (.o) and executable (.exe) files normally contain debugging information. The
hexify tool ignores this information.	

If the input is an object (.o) file, then hexify checks to make sure the file contains a
single segment, i.e., that the source file contained only one .begin statement. It also
makes sure it contains no relocatable data, which would require the linker’s
involvement.	

Output Form: System Verilog	

The -sv command line option can be used to create output that can be included in a
System Verilog program.	

For example, consider the following file:	

.begin kernel, startaddr=0x000001200, gp=undefined
_entry:

.export _entry
add r1,r2,r3
jump _entry
.doubleword 0x0011223344556677
.doubleword 0x8899aabbccddeeff
.doubleword 0x1111222233334444
.string "hello world"

We can convert it into System Verilog statements as follows:	

Shell% asm romExample.s
Shell% hexify romExample.o -silent -sv
 // The following statements were generated by the "hexify" tool
 // from "romExample.o" on Mon May 17 18:26:03 2021

 36'h000001200: data_val = 64'h00010321_19ffffc0;
 36'h000001208: data_val = 64'h00112233_44556677;
 36'h000001210: data_val = 64'h8899aabb_ccddeeff;
 36'h000001218: data_val = 64'h11112222_33334444;
 36'h000001220: data_val = 64'h68656c6c_6f20776f;
 36'h000001228: data_val = 64'h726c6400_00000000;
Shell%

Emulator Reference Manual / Porter	 	 Page of 	143 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

Output Form: HEX File Format	

The hexify tool can also produce its output in a format we call “HEX format”, using
the -hex command line option.	

Using the same file as above, here is an example:	

Shell% hexify romExample.o -silent -hex
00000000
00000030

00000000
00001200

00010321
19ffffc0
00112233
44556677
8899aabb
ccddeeff
11112222
33334444
68656c6c
6f20776f
726c6400
00000000

da
Shell%

Note: This format is not the "Intel HEX" format.	

Note: The emulator cannot read data in this format.	

Note: This format will be discontinued and removed. At this time, it is only used by
the boot loader MBBooter.s running on my FPGA.	

This file is ASCII and contains only hex digits and NEWLINE characters. Each
doubleword is expressed as two 32 bit words on separate lines.	

The first doubleword is the ByteCount. The second doubleword is the
LoadAddress. There is no EntryPoint; execution is assumed to begin with the first
byte, so EntryPoint and LoadAddress are equal.	

Emulator Reference Manual / Porter	 	 Page of 	144 147

Chapter 8: BlitzHEX1, BlitzHEX2, and Hexify	

The final line contains a single byte, which is the Checksum of all the data bytes. The
Checksum is used to make sure the transfer completes correctly and MBBooter will
complain if there is a mismatch with the value it computes from the data bytes.	

Output Form: HEX2 File Format	

The hexify tool can also produce its output in a format we call “HEX2 format”, using
the -hex2 command line option.	

Here is an example:	

Shell% hexify initcode.exe -silent -hex2 -nowarn
REGION 1: Location: 0x800000000 ... 0x800003fff
Start Address: 0x0000000800000000
EntryPoint: 0x0000000800000000
Size in bytes: 0x0000000000004000 (decimal 16384)

\x17\x00\x01\x41\x17\x00\x01\xc2\x23\x00\x07\x00\x23\x00\x02\x00
\x19\xff\xff\xc0\x2f\x69\x6e\x69\x74\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x08\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

	 	 < …etc… >	
Shell%

Note: This format is not the "Intel HEX" format.	

Note: The emulator cannot read data in this format.	

Note: This format is useful for the “initcode.s” file, which contains the initial user
process of an OS, to be used as the first instructions to be executed in user mode.
The instructions are copied from the hexify output directly into the kernel code. For
example:	

const
 initcode = "\x17\x00\x01\x41\x17\x00\x01\xc2\x23\x00\x07\x00\x23\x00\x02\x00"
 "\x19\xff\xff\xc0\x2f\x69\x6e\x69\x74\x00\x00\x00\x00\x00\x00\x00"
 "\x00\x00\x00\x08\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00"

Emulator Reference Manual / Porter	 	 Page of 	145 147

About This Document	

Document Revision History / Permission to Copy	

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name is used. The document history is:	

Date	 Author	
3 May 2021	 Harry H. Porter III <document created>	
17 June 2021	 Harry H. Porter III	
18 October 2022	 Harry H. Porter III	
14 December 2023	 Harry H. Porter III <current version>	

	 	
In the spirit of the open-source and free software movements, the author grants
permission to freely copy and/or modify this document, with the following
requirement:	

You must not alter this section, except to add to the revision history. You
must append your date/name to the revision history.	

Any material lifted should be referenced.	

Corrections and Errors	

Please contact the author if you find…	

	 • Inaccurate information that you can correct	
	 • Incomplete information that you can fill in	
	 • Confusing text that needs to be reworded	

Thanks!	

Emulator Reference Manual / Porter	 Page of 146 147

Recent Changes	

This appendix documents recent changes to the Blitz-64 emulator and this
document.	

3-23 May 2021	

This document was created.	

Emulator Reference Manual / Porter	 Page of 147 147

