
Blitz-64:	
Assembler,	
Linker, and	

Object File Format	

Harry H. Porter III	
Portland State University	

HHPorter3@gmail.com	

14 December 2023 	

This document describes the following tools:	
	 asm — The Assembler	
	 link — The Linker	
	 dumpobj — A tool to display object files in human-readable form	
	 createlib — A tool to create object library files	

In addition, it describes the format and layouts of:	
	 .o — Object files	
	 .lib — Library files	
	 a.out — Executable files	

This document gives the information needed to use these tools. It also provides
some details about their implementation and algorithms.	

	 Available Online: Blitz64.org/Documentation/B64-Assembler.pdf

http://Blitz64.org/Documentation/B64-Assembler.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table of Contents	
Chapter 1: Introduction	 	7
Assembly Language	 	7
The Linker	 	8
Additional Tools	 	10
Tool Names and File Extensions	 	10
Document Revision History / Permission to Copy	 	11
Program Versions	 	12

Chapter 2: Assembler Syntax	 	13
An Example Program	 	13
A Second Example	 	13
Terminology, Notation, and Basic Concepts	 	15
Tokens and Lexical Issues	 	17
Instruction Syntax	 	24
Register Names	 	26
Machine and Synthetic Instructions	 	27
Assembler Pseudo-ops	 	29
.byte, .halfword, .word, .doubleword	 	30
.float	 	33
.string	 	34
.skip	 	35
.align	 	36
.export	 	37
.import	 	38
.equ	 	39
.begin	 	40

Chapter 3: Symbols and Expressions	 	42
Quick Summary	 	42
Symbols	 	42
Labels	 	44
Equates	 	44
Expression Syntax and Evaluation	 	45

Blitz-64: Assembler and Linker / Porter	 Page of 2 284

Table of Contents	

Chapter 4: Segments	 	51
Quick Summary	 	51
Segments	 	51
The Global Pointer Register, gp	 	56

Chapter 5: Synthetic Instructions	 	61
Quick Summary	 	61
Introduction	 	61
Simple Translations	 	62
Absolute Value	 	65
Branching Instructions	 	65
The Complex Translations	 	67
Format S-1: “movi RegD,Value”	 	70
Format S-2: “bXX Reg1,Reg2,Address”	 	73
Format S-3: “jump/call Address”	 	76
Format S-4: “loadX RegD,Address”	 	78
Format S-5: “loadX RegD,Offset(Reg1)”	 	81
Format S-6: “storeX Address,Reg2”	 	85
Format S-7: “storeX Offset(Reg1),Reg2”	 	87

Chapter 6: The Linker	 	88
Quick Summary	 	88
Using the Linker	 	88
Error Messages	 	89
Additional Errors	 	91
Warning Messages	 	92

Chapter 7: Support for Runtime Debugging	 	93
Quick Summary	 	93
Debugging Pseudo-ops	 	94
The .sourcefile Pseudo-op	 	95
The .function Pseudo-op	 	95
The .global Pseudo-op	 	97
The .local and .regparm Pseudo-ops	 	100
The .stmt Pseudo-op	 	103
The .comment Pseudo-op	 	105

Blitz-64: Assembler and Linker / Porter	 	 Page of 3 284

Table of Contents	

Chapter 8: Assembler Programming Conventions	 	108
Quick Summary	 	108
Function Calling Conventions	 	108
The Runtime Stack	 	115
Argument Locations and the Parameter Block	 	118
Debugging Support	 	121
Function Prologue and Epilogue	 	125
Object Representation	 	130
Method Invocation and Dynamic Dispatching	 	132
Compilation Examples	 	135
Access of Variables	 	136
Arithmetic Computation	 	140
Flow of Control Examples	 	144

Chapter 9: Format of Object Files	 	155
Quick Summary	 	155
Terminology and Files	 	155
The Object File	 	157
Integers	 	161
Magic Number	 	161
The Version Number and ISA Architecture Fields	 	162
Separators (********)	 	163
Segment Information	 	163
Symbols in the Object File	 	165
The Symbol List	 	166
Patch Entries	 	169
The Patch Types	 	172
Debugging Information - Header Info	 	175
Debugging Information - Global Blocks	 	176
Type Codes Used for Debugging	 	178
Debugging Information - Function Blocks	 	178
Debugging Information - Register Parameter Blocks	 	180
Debugging Information - Local Variable Blocks	 	181
Debugging Information - Statement Blocks	 	182
Future Work	 	183

Blitz-64: Assembler and Linker / Porter	 	 Page of 4 284

Table of Contents	

Chapter 10: Executable File Format	 	185
Quick Summary	 	185
Introduction	 	185
File Format	 	186
Magic Number	 	188
The Version Number and ISA Architecture Fields	 	188
Padding Bytes	 	190
Number of Pages	 	190
Lowest and Highest Used Addresses	 	191
Entry Point	 	191
Separators	 	192
List of Regions	 	192
List of Segments	 	193
Modules and Symbols	 	195
The Debugger Info Section	 	197
Layout of Debugging Information	 	199

Chapter 11: Object Libraries	 	202
Quick Summary	 	202
The Format of a Library File	 	202
Introduction and Motivation for Libraries	 	203
About the Library File	 	205
The Version Number Field	 	210

Appendix 1: Machine Instructions	 	211

Appendix 2: Command Line Tools	 	216
Quick Summary	 	216
The Assember Tool	 	216
The Linker Tool	 	219
The “createlib” Tool	 	222
The “dumpobj” Tool	 	223
The “hexdump” Tool	 	224

Appendix 3: The Assembler Algorithm	 	226
Introduction	 	226
ProcessSynthetics	 	226

Blitz-64: Assembler and Linker / Porter	 	 Page of 5 284

Table of Contents	

First Phase	 	229
Second Phase: Relaxation	 	231

Appendix 4: The Linker Algorithm	 	235
Quick Summary	 	235
Introduction	 	235
Pointers and Objects	 	238
Print Routines	 	240
Initialization	 	242
The InFile Data Structure	 	244
Functions for Reading and Writing	 	244
Reading the Input Files	 	245
The Module Structure	 	246
Hash Tables: Library Index and Exported Index	 	247
The Module List	 	249
Reading the Modules: AddNewModule	 	250
The Segment, Symbol, and Patch Objects	 	251
Segment Objects	 	253
Symbol Objects	 	255
Patch Objects	 	258
Processing Imported Symbols	 	261
Sorting the Label and Segment Lists	 	262
Regions and Placing Segments	 	265
The Main Linker Algorithm	 	278
Finalization	 	282

Acronym List	 284

Blitz-64: Assembler and Linker / Porter	 	 Page of 6 284

Chapter 1: Introduction	

Assembly Language	

The assembler is a tool which will translate programs written in assembler (or
“assembly language”) into binary machine code. Machine code can be loaded into
memory and executed. Machine code consists of a sequence of binary bits and
cannot be practically created or deciphered by humans.	

Assembly code is a human-readable notation in which to specify machine code.	

Although high-level programming languages strive to be platform independent, the
opposite is true of assembly language. Each processor has a unique assembly
language tailored to its design. There is much similarity in the assembly languages
for different machines, but there is also significant difference.	

This document describes the assembly language for the Blitz-64 processor core. It
assumes that you have familiarity with the Blitz-64 Instruction Set Architecture
(ISA). The Blitz-64 architecture is described in the following document:	

	 “Blitz-64: Instruction Set Architecture Reference Manual”	

Programming in assembly language is an acquired taste and should not be
attempted by beginning programmers. Assembly programming requires an
enormous attention to detail and an extremely high degree of conscientiousness,
commitment, and precise logical thinking. The resulting programs are totally non-
portable. Merely getting an assembly program to work on a different model in the
same processor line is non-trivial.	

Assembly language and the skill to code in assembler is important for several
reasons.	

First, there are often tasks that simply cannot be done in high-level languages and
the code must be written in assembler. Assembly code is required for operating

Blitz-64: Assembler and Linker / Porter	 Page of 7 284

Chapter 1: Introduction	

systems kernels and for accessing certain specialized aspects of the hardware that
cannot be addressed in a high-level language. Although much work has been done to
add capabilities to high-level languages to minimize the amount of assembly code,
some assembly code is required.	

Second, high-level languages must be compiled to run on physical hardware. (Here
we speak of compiled languages (like “C” and “C++”) and not of interpreted
languages (like just about every other modern language, including Java, JavaScript,
Python, Perl, etc.). This means the source code must ultimately be translated into the
bit patterns recognized by the intended target hardware.	

The typical approach is for a compiler to translate the source code into assembly
code. In a second step, the assembler tool is used to translate the assembly program
into machine code. While there are many approaches, this approach works well
since it breaks the task into two smaller, tasks: translation into assembly code,
followed by translation into machine code. It removes many of the hardware details
from the compiler and also permits the compiler writers to determine whether a
compiler is working properly and producing the correct output.	

Third, understanding the assembly language for a processor is a requirement for
anyone who wants to understand and improve the runtime execution performance
of programs written in high-level code. Those programmers seeking to maximize
performance need to understand assembly language so they can spot inefficient
code sequences and determine whether the compiler is producing the best code.	

Fourth, assembly language programming is required for new, state-of-the-art
processors for which no high-level languages are available. Assembly language
programming may also be required for obscure or specialized processors for the
same reason.	

Finally, there are a few programmers who actually enjoy programming in assembler.	

The Linker	

The assembler tool translates assembly source code into machine code. However,
programmers break large programs into pieces which we will call “modules”.
Generally, a small number of pieces are combined to produce an executable program.
For example, one piece might contain a number of mathematical support functions

Blitz-64: Assembler and Linker / Porter	 	 Page of 	8 284

Chapter 1: Introduction	

(like “sin” and “sqrt”). This might be combined with the “main” function of a
program to produce an executable. Obviously, the mathematical support functions
are written separately and reused in many different programs.	

In practice, there is a tremendous number of code modules. The sharing and re-use
of modules is critical.	

The assembler tool takes as input a single source code file (containing the code and
data for a single module) and produces a “object file”. For example, a large program
consisting of 5 modules will require the assembler to be run five times, once for each
module, producing five object files.	

The linker tool is named “link”. (We chose a name more meaningful than the
traditional name used in Unix/Linux, which was “ld”.)	

The linker tool is used to combine the object files and produce a single executable
file. In other systems, the linker also takes as input some sort of textual script or
program to give the linker instructions. But in the Blitz-64 approach, such additional
information is not needed. The input to the Blitz-64 linker consists of only the object
files.	

The executable file is stored in a file and, when the program is to be run, the
operating system will read this file (understanding the format of executable files)
and will load the bits into memory just prior to beginning execution.	

The primarily programming language for the Blitz-64 system is KPL (Kernel
Programming Language). While almost every other computer uses the “C”
language — a language from the early 1970s — as the core language upon which all
the remaining software is constructed, Blitz-64 does not support “C”. Blitz-64 takes
the radical approach of not supporting any legacy software.	

KPL supports a concept called “packages”. Each package is separately compiled into
an assembly language program. In this way, KPL works like program development in
“C”. For example, five packages will be separately compiled, yielding five different
assembly files.	

Each assembly file produced by the compiler will assembled separately. Additional
modules that have been hand-code in assembly language will also be assembled by
the assembler tool. Finally, the linker tool will be run to combine all the object
modules into a single executable file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	9 284

Chapter 1: Introduction	

Additional Tools	

A separate tool, called “dumpobj”, is also provided. It can be used to look at the
contents of an object file or an executable file. These files are not text files and are
not meant to be human readable. The “dumpobj” tool merely prints out information
about the file contents in a format that humans can read. This tool is not normally
needed in program development, so it is used less often.	

Several object modules can be combined into a “library”. The linker can consult a
library file to locate modules as needed by the program being linked. The
“createlib” tool is used to create library files.	

Another tool, called “hexdump”, is also provided to look at the contents of any file.
The “hexdump” tool prints out the contents of any file in hex. It also prints out any
ASCII characters. The “hexdump” tool is useful in determining what exactly is in a
file.	

Tool Names and File Extensions	

The names of the tools are:	

	 kpl	 The KPL compiler tool	
	 asm	 The Assembler tool	
	 link	 The Linker tool	
	 dumpobj	 Tool to display info about object and executable files	
	 createlib	 Tool to create a library file	
	 hexdump	 Tool to display the contents of any file in hex	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	10 284

Chapter 1: Introduction	

Blitz-64 uses file extensions to suggests the nature or type of material in a file, and
the file extensions are similar to other systems:	

	 .c	 KPL source code (“c” for “code”)	
	 .h	 KPL header files	
	 .s	 Assembly programs	
	 .o	 Object files	
	 .lib	 Library files	

Executable programs usually do not have extensions, but when no filename is
supplied, the traditional default name of “a.out” is used. 	

Document Revision History / Permission to Copy	

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name are used. The document history is:	

Date	 Author	
27 October 2018	 Harry H. Porter III <document created>	
28 May 2019	 Harry H. Porter III 	
19 March 2022	 Harry H. Porter III 	
18 October 2022	 Harry H. Porter III	
3 November 2022	 Harry H. Porter III	
9 September 2023	 Harry H. Porter III	
14 December 2023	 Harry H. Porter III <current version>	

	 	
In the spirit of the open-source and free software movements, the author grants
permission to freely copy and/or modify this document, with the following
requirement:	

You must not alter this section, except to add to the revision history. You
must append your date/name to the revision history.	

Any material lifted should be referenced.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	11 284

Chapter 1: Introduction	

Program Versions	

In the Blitz-64 project, version numbers are not used for programs and documents.
Instead, dates are used. This document describes the following programs.	

By comparing dates, you can determine whether this document matches the tools
you are using or, if not, which is more recent.	

Tool 	 Version Described Here 	 Coding Status	
asm	 < same date as this document >	 Completed	
link	 < same date as this document > 	 Completed	
dumpobj	 < same date as this document > 	 Completed	
createlib	 < same date as this document > 	 Completed	
hexdump	 < same date as this document > 	 Completed	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	12 284

Chapter 2: Assembler Syntax	

An Example Program	

 #################
 #
 # MyFun
 #
 # This function does such and such. It uses…
 #
 #################
 .begin
 .align 4
 .export MyFun
 MyFun: stored 0(sp),r2 # Save registers
 stored 8(sp),r3 # .
 loop: # LOOP
 loadb r3,0(r2) # IF r4>*r2 THEN
 ble r4,r3,endif # .
 sub r1,r5,r3 # r1 := r5-(*r2)
 endif: # ENDIF
 addi r2,r2,1 # r2++
 # … etc …
 jump loop # ENDLOOP

A Second Example	

The following example illustrates a number of different instruction and operand
combinations.	

Blitz-64: Assembler and Linker / Porter	 Page of 13 284

Chapter 2: Assembler Syntax	

This code assembles without error as a standalone source file, although taken as a
whole, the code is obviously not a program to be executed.	

Examples showing different pseudo-ops

.begin startaddr=0x0456,executable,writable
a: .byte 0x12 # allocates 1 byte
b: .halfword 0x1234 # allocates 2 bytes
c: .word -1234 + 0x5d # allocates 4 bytes
d: .doubleword y+246 # allocates 8 bytes
e: .float -123.456e78 # allocates 8 byte double float
s_1: .string "hello\n" # allocates N bytes

.export MyLabel # make symbol avail to other mods

.import OtherLabel # use a symbol from other module
x: .skip 100 # skips over bytes, w/ zero-fill

.align 8 # inserts 0x00 bytes as necessary
y: .equ 100 # Defines symbolic constant

Examples showing different operands

sysret # Format A-0: <no operands>
checkw r1 # Format A-1: Reg1
sextw r7,r1 # Format A-2: RegD,Reg1
add r7,r1,r2 # Format A-3: RegD,Reg1,Reg2
alignd r7,r1,r2,r3 # Format A-4: RegD,Reg1,Reg2,Reg3
csrswap r7,csr_status,r2 # Format A-7: RegD,CSRReg1,Reg2
csrread r7,csr_status # Format A-8: RegD,CSRReg1
getstat r7 # Format A-9: RegD
addi r7,r1,-456 # Format B-1: RegD,Reg1,immed-16
load.d r7,250(r1) # Format B-2: RegD,immed-16(Reg1)
checkaddr r7,5 # Format B-3: RegD,Reg1,immed-3
syscall 123 # Format B-4: immed-10
slli r7,r1,63 # Format B-5: RegD,Reg1,immed-6
csrset csr_status,0x03 # Format B-6: CSRReg1,immed-16
store.b 123(r1),r2 # Format C-1: immed-16(Reg1),Reg2
b.eq r1,r2,+8 # Format C-2: Reg1,Reg2,immed-16
jal lr,-12 # Format D-1: RegD,immed-20

Examples showing different synthetic instructions

movi r7,0x123456789abcdef0 # Format S-1
blt r1,r2,MyLabel # Format S-2
call MyFun # Format S-3

Blitz-64 Instruction Set Architecture / Porter	 Page of 	14 284

Chapter 2: Assembler Syntax	

loadw r7,MyVariable # Format S-4
loadw r7,my_offset(r1) # Format S-4
storeb MyVariable,r2 # Format S-6
stored my_offset(r1),r2 # Format S-7

MyVariable: .doubleword 0
MyLabel: jump MyLabel
my_offset: .equ 100

Terminology, Notation, and Basic Concepts	

•	Byte	 8 bits	
•	Halfword	 16 bits	 2 bytes	
•	Word	 32 bits	 4 bytes	
•	Doubleword 	 64 bits 	 8 bytes	

Binary values are frequently specified in hex.	

	 number	 number 	
 	 of bytes	 of bits	 example value (in hex)	
	 byte	 1	 8 A4	
	 halfword	 2	 16	 C4F9	
	 word	 4	 32	 AB12CD34	
	 doubleword	 8	 64	 0123456789ABCDEF	

To clarify and prevent confusion, hex numbers are often preceded by “0x”. For
example:	

	 0x1234	

As in most other computers, main memory is byte addressable, which means that
every byte in memory has a unique address.	

Main memory is Big Endian, which means that the most significant byte of a value is
stored first, at the starting address. For example, if the value 0x1234 is stored in
memory at address X, then the first byte 0x12 will be in location X and the second
byte 0x34 will be in location X+1. This means that the bytes are not rearranged.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	15 284

Chapter 2: Assembler Syntax	

Many other computers (including x86) use the opposite convention, Little Endian,
which reverses the byte order.	

The notation [n:m] is used to identify bits. For example, [63:60] means the most
significant (MSB) 4 bits in a doubleword.	

We use the term KiByte to mean 1,024 (i.e., 210). We avoid using the term KByte (i.e.,
1,000 = 103). Likewise, we use MiByte and GiByte instead of MByte and GByte.	

	 	 	 Hex Value 	 Decimal Value 	
	 KiByte	 210	 400	 1,024	
	 MiByte	 220	 10_0000	 1,048,576	
	 GiByte	 230	 4000_0000	 1,073,741,824	

The Blitz-64 processor has certain alignment requirements. A halfword aligned
address is an even number and, when represented in binary, ends with a 0 bit. A
word aligned address is a multiple of 4 and ends with 00. A doubleword aligned
address is a multiple of 8 and ends with 000.	

The Blitz-64 is “strongly 64 bits”, which means that all arithmetic is done with 64
bits. The processor has minimal support for legacy sizes such as 8, 16, or 32 bits.	

Integers are represented with signed, two’s complement values.	

	 	 Size	 	
	 	 in bits 	 Range of values	 	 	
byte	 8 	 -128 … 127	
halfword	 16	 -32,768 … 32,767	
word	 32	 -2,147,483,648 … 2,147,483,647	
doubleword	 64	 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807 	

Sign-extension enlarges an integer represented in signed two’s complement binary.
For example, sign-extending the halfword 0x8C32 to a doubleword yields the
following result:	

	 0xFFFFFFFFFFFF8C32	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	16 284

Chapter 2: Assembler Syntax	

For large numbers, we often add underscores every 16 bits, to prevent confusion :	1

	 0xFFFF_FFFF_FFFF_8C32	

The underscore is in assembler code, as well as documentation and comments.	

Size reduction (e.g., from 64 to 32 bits) results in an “overflow” error whenever a
the value exceeds the range of the smaller size..	

Tokens and Lexical Issues	

Identifiers may contain letters, digits, and underscores. For example:	

MyLabel
_entry
lab_23_

Identifiers must begin with a letter or underscore. Case is significant.	

Identifiers are limited in length. Currently the limit is set to 1,000 characters. [This
limitation is hardcoded into the assembler tool and requires recompiling “asm” to
change.]	

Identifiers may contain only ASCII characters. By “letters and digits”, we mean one of
the the 26+26+10 characters in { a … z A … Z 0 … 9 }.	

Keywords The assembler recognizes a number of special keywords which
otherwise resemble identifiers. These keywords may not be used for identifiers.	

Although the period character is not allowed in identifiers, several keywords contain
the period character. For example:	

load.w
.begin

 Sometimes a comma is used as a separator. The Blitz-64 tools recognize and accept underscores, 1

but not commas.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	17 284

Chapter 2: Assembler Syntax	

The following classes of keywords are recognized:	

	 	 Examples 	
	 Opcodes for machine instructions	 add, load.w, syscall, …	
	 Opcodes for synthetic instructions	 mov, call, bgt, …	
	 Pseudo-ops	 .begin, .equ, .string, …	
	 Registers	 r0, … r15, t, sp, lr, …	
	 CSR Registers	 csr_status, csr_cycle, …	
	 Misc. keywords	 page, startaddr, …	

An integer value may be specified in decimal or in hex. If specified in decimal, the
integer value must lie between 0 and 9,223,372,036,854,775,807 (i.e. 263-1).
Commas are not allowed.	

Integer values may be given in hex notation, and must be preceded by “0x”. For
example:	

	 0x1234abcd	
	 0x1234ABCD 	 ← case does not matter	

A hex constant may optionally contain underscore characters, which may be used to
improve readability. An underscore should be placed after every fourth hex digit, but
this is not enforced.	

	 0x4d03_55e2_3a8e_47a9 		 ← recommended style	
	 0x4d_0355e23a___8e47a9 	 ← also allowable	

Every integer constant specifies a 64-bit signed value, regardless of how many digits
appear.	

Integer values can be specified in either decimal or hex. Hex notation and decimal
notation are fully interchangeable. Anywhere a decimal value can be specified, a hex
value can be used instead, and vice-versa:	

	 123	 	
	 0x7b	 ← equivalent value	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	18 284

Chapter 2: Assembler Syntax	

Decimal can only be used for positive values but a preceding minus sign can be used
to form an expression so, effectively, negative numbers can be specified. For
example:	

	 -123

Unary negation can be applied to any integer, whether specified in decimal or hex, so
the following all represent the same 64-bit value:	

	 -4660	 	
	 -0x1234	 ← identical value	
	 0xffffffffffffedcc	 ← identical value	

A number given in hex is not sign-extended by the assembler.	

	 0xc8a4	 ← equal to +51,364	
	 0x000000000000c8a4	 ← identical value	

If a negative number is specified in hex, sign-extension to 64-bits is required. For
example	

	 0xc8a4	

is equal to -14,172 as a signed, 16-bit value. To specify this value in hex, the leading
1 bits must be given. This value can be specified in any of the following ways:	

	 0xffffffffffffc8a4
-14172
-0x375C

Note that the following values are equal:	

	 0xffffffffffffffff
-1

If a hex number has fewer than 16 hex digits, it will be interpreted as a positive
number. Be careful:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	19 284

Chapter 2: Assembler Syntax	

	 0xfffffffffffffff 	 ← missing an “f”
	 1152921504606846975 	← identical value

Note that the most negative 64 bit value may not be specified in decimal since the
positive portion exceeds the limit for positive numbers. This value must be specified
in hex:	

	 -9223372036854775808	 	 ← not allowed	
	 0x8000_0000_0000_0000		 ← use this instead	

Strings are written using double quotes. For example:	

"Hello, world"

The following escape sequences are allowed in strings:	

\0 \a \b \t \n \v \f \r \e \" \' \\ \xHH

where HH represents any two hex digits. The escape sequences have the traditional
meanings:	

	 \0 0x00	 ctrl-@	 NULL	
	 \a 0x07	 ctrl-G	 BELL (alert)	
	 \b 0x08	 ctrl-H	 BS (backspace)	
	 \t 0x09	 ctrl-I	 HT (tab)	
	 \n 0x0A	 ctrl-J	 LF (linefeed, newline, NL)	
	 \v 0x0B	 ctrl-K	 VT (vertical tab)	
	 \f 0x0C	 ctrl-L	 FF (form feed, new page)	
 	 \r 0x0D	 ctrl-M	 CR (carriage return, enter)	
 	 \e 0x1B	 ctrl-[ESC (escape)	
	 \d 0x7F	 delete	 DEL key	
	 \" 0x22	 "	 double quote character	
	 \' 0x27	 '	 single quote character	
	 \\ 0x5C	 \	 backslash character	
	 \xHH 0xHH	 	 arbitrary byte (where H is any hex character)	

In a string constant, we make a distinction between the string “source” characters
and the string “value”. For example, in the following string	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	20 284

Chapter 2: Assembler Syntax	

.string "\n"

there are two source characters ‘\’ and ’n’. In the string value, there is only one byte,
namely 0x0a.	

The string value is a sequence of zero or more bytes, and there is no constraint on
what byte values or sequences are allowed.	

However, there are constraints on the string source characters.	

The string source may not include any ASCII control characters directly. Instead, the
programmer may use escape sequences, such as \0, \n, \t, etc.	

One implication is that strings may not contain newlines directly. In other words, a
string may not span multiple lines. Use \n or \r within the string source instead.	

The .s source file is a “text” file encoded in UTF-8. Non-ASCII characters (as in the
next example) are allowable in comments and within string source (between the
quotes in a string constant). Non-ASCII characters are not allowed anywhere else.	

Any Unicode character except ASCII control characters may appear in a string
source. The control characters (i.e., codepoints 0x00 … 0x1F and 0x7F) may not
appear directly; instead escape sequences must be used.	

The string source will be translated into a value — a sequence of bytes — encoded in
UTF-8.	

Consider the following string:	

str: .string "∉"

This string source contains 1 character, a Unicode character called “NOT AN
ELEMENT OF”.	

The UTF-8 encoding of this character requires three bytes. Thus, this string value
consists of three bytes.	

The following is exactly equivalent. Both place exactly the same bytes at location
“str”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	21 284

Chapter 2: Assembler Syntax	

str: .string "\xE2\x88\x89"

[See the document titled “An Overview of Unicode”, which describes UTF-8.]	

String values are limited in length. This limit is identical to the length limit for
identifiers.	

The operand of the .string pseudo-op must be a string.	

In addition, a string may be used in an expression in place of an integer. However, in
this case, the string value must have exactly 8 bytes. The characters will be used to
construct an 8 byte (i.e., 64 bit) integer value.	

(More precisely, the UTF-8 encoding of the characters will be used.)	

For example, the following are four ways to represent the same 64-bit value:	

"Hello!\n\0"
"\x48\x65\x6C\x6C\x6f\x21\x0A\x00" ← identical value
0x48656C6C6f210A00 ← identical value
5216694956355291648 ← identical value

Character constants are given using single quotes. For example:	

'q'

There must be exactly one character, or an escape sequence representing a single
byte. The same escape sequences as used in strings are allowed.	

A character constant can be used any place an integer is allowed and is equivalent to
an integer value between 0 and 255 (i.e., between 0x0000000000000000 and
0x00000000000000FF).	

For example, the following are equal and can be used interchangeably:	

'\n'
10
0x0A

Blitz-64 Instruction Set Architecture / Porter	 Page of 	22 284

Chapter 2: Assembler Syntax	

Since a character constant is always exactly one byte, only ASCII characters are
permitted, not arbitrary Unicode characters.	

A floating-point constant is used to specify a double precision (8-byte) floating
point value. To be differentiated from an integer constant, the value must have either
a decimal point or an exponent. The exponent is signified by either “E” or “e”.	

Examples of floating point constants:	

.float 123.456

.float -3.4E-21

.float +4.5e+21

Floating point constants are used in the .float pseudo-op, and nowhere else.	

Comments begin with the hash or pound symbol (#) and extend thru end-of-line.	

Punctuation symbols The following have special meaning:	

,	 separates operands
: follows labels
= used for keyword operands in .begin pseudo-op
(expression grouping
) expression grouping
+ addition and unary plus
- subtraction and unary minus
* multiplication
/ integer divison
% remainder after division
& bitwise AND
| bitwise OR
^ bitwise XOR
! bitwise NOT
<< shift left logical
>> shift right logical
<<< shift left arithmetic
>>> shift right arithmetic

Blitz-64 Instruction Set Architecture / Porter	 Page of 	23 284

Chapter 2: Assembler Syntax	

White space The assembler parses each line by first identifying lexical tokens and
removing comments. Lexical tokens may be separated by “white space”, which is
defined as spaces and tabs.	

End-of-line The EOL character is treated as a token, not as white space; the EOL is
significant in syntax parsing. The source file can use \n (i.e., NEWLINE, 0x0A) or \r
(i.e., RETURN, 0x0D) to indicate the EOL; either will work.	

Instruction Syntax	

Each line in the assembly source file must have the following syntax:	

 [label :] [opcode operands] [# comment] EOL	

(The brackets indicate optional material.)	
	 	 	
The label is optional. It need not begin in column one. It must be followed by a colon
token. A label may be on a line by itself. If so, it will be attached to the next thing
following it. In other words, a label will stand for the address of an instruction and
the instruction can be given on the same line, or on the following line.	

The opcode must be a legal Blitz-64 instruction or a pseudo-op. The opcode is
always lowercase.	

Operands are separated by commas. The exact syntax of the operands is determined
by the instruction opcode. Some Blitz-64 instructions take no operands while some
instructions require several operands.	

A comment is optional and extends to the end of the line if present.	

Each line is independent. The end-of-line (EOL) is treated as a separate token, not as
white space (as occurs in many programming languages). Every instruction must be
on only one line, although lines may be arbitrarily long.	

Assembler pseudo-ops have the same syntax. Some permit labels and others forbid
labels.	

The following formatting and spacing conventions are recommended:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	24 284

Chapter 2: Assembler Syntax	

• Labels should begin in column 1.	
• The op-code should be indented by 1 tab stop.	
• The operands, if any, should be indented by 1 additional tab stop.	
• Each Blitz-64 instruction should be commented.	
• The comment should be indented by 2 additional tab stops.	
• A single space should follow the # comment character.	
• Block comments should occur before each routine.	
• Comments should be indented with 2 spaces to show logical organization.	

Here is an example of the recommended style for Blitz-64 assembly code. (The
header line shows standard tab stops.)	

 t t t t t t
 #################
 #
 # MyFun
 #
 # This function does such and such. It uses…
 #
 #################
 .begin
 .align 4
 .export MyFun
 MyFun: stored 0(sp),r2 # Save registers
 stored 8(sp),r3 # .
 loop: # LOOP
 loadb r3,0(r2) # IF r4>*r2 THEN
 ble r4,r3,endif # .
 sub r1,r5,r3 # r1 := r5-(*r2)
 endif: # ENDIF
 addi r2,r2,1 # r2++
 # … etc …
 jump loop # ENDLOOP

Of course assembly code produced by a compiler will probably not be commented or
formatted so nicely.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	25 284

Chapter 2: Assembler Syntax	

Register Names	

Register names must be in lowercase. Several registers have two names. The
programmer can use either name. Generally, the alternate name is recommended.	

	 	 Alternate	
	 	 Name 	 Function 	
	 r0	 	 Zero	
	 r1	 	 Argument 1 / Return Value	
	 r2	 	 Argument 2	
	 r3	 	 Argument 3	
	 r4	 	 Argument 4	
	 r5	 	 Argument 5	
	 r6	 	 Argument 6	
	 r7	 	 Argument 7	
	 r8	 t	 Temp register, used by assembler/linker	
	 r9	 s0	 Work reg (caller-saved)	
	 r10	 s1	 Work reg (caller-saved)	
	 r11	 s2	 Work reg (caller-saved)	
	 r12	 tp	 Thread data pointer	
	 r13	 gp	 Global data pointer	
	 r14	 lr	 Link register	
	 r15	 sp	 Stack pointer	

Register “r0” is the zero register. Its value is always read as zero and writes are
ignored. The programmer often uses the zero register as a destination when the goal
is to discard a value.	

Several instructions require the name of a Control and Status Register (CSR).	

There are 16 CSR registers. Their names must be written in lowercase.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	26 284

Chapter 2: Assembler Syntax	

	 	 	 	 Description 	 	 	 	 	
	 0	 csr_version	 Version of the BLITZ-64 architecture ISA	
	 1	 csr_prod	 Product Identifier	
	 2	 csr_core	 Core number	
	 3	 csr_instr	 Instruction counter (Reset upon power-on-reset)	
	 4	 csr_cycle	 Cycle counter (Reset upon power-on-reset)	
	 5	 csr_timer	 Time of next interrupt, in cycles	
	 6	 csr_status	 System status register	
	 7	 csr_stat2	 Previous System Status Register	
	 8	 csr_trapvec	 Pointer to page table root node	
	 9	 csr_pgtable	 Pointer to page table root node	
	 10	 csr_prevpc	 Previous PC (for trap handler)	
	 11	 csr_cause	 Trap code, indicating which trap just happened	
	 12	 csr_bad	 Offending instruction	
	 13	 csr_addr	 Offending Virtual Address	
	 14	 csr_ptr	 Ptr to Process Control Block (& reg save area)	
	 15	 csr_temp	 Temp work register	

Machine and Synthetic Instructions	

The Blitz-64 instructions are documented separately in	

	 “Blitz-64: Instruction Set Architecture Reference Manual”	

For each instruction, that document describes:	

	 • what operands are used	
	 • what each instruction does when executed	
	 • how each instruction is represented in machine code	

Each line in the assembly program contains either:	

	 • A machine instruction,	
	 • A synthetic instruction, or	
	 • A “pseudo-op” instruction	

(In addition, some lines will contain only labels or comments. Blank lines can be
used to improve readability.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	27 284

Chapter 2: Assembler Syntax	

By “machine instruction”, we mean the line contains the human-readable assembly
code form of an instruction implemented directly by the Blitz-64 hardware.	

The opcode (such as “addi”) determines exactly which machine instruction is
intended and exactly which operands are required. Each opcode corresponds to
exactly one machine code instruction, so there is a one-to-one correspondence
between machine opcodes (like “addi”) and machine instructions.	

For each machine instruction, there is exactly one allowable syntax for the operands.
In the case of “addi”, two registers and an immediate value (in that order and
separated by commas) are required:	

addi r3,r6,1234

The assembler will translate each machine opcode into a single 32-bit machine code.
For example, this instruction will be translated to:	

0x0104d263

You can understand this instruction as follows:	

01 machine opcode for “addi”	
	 04d2 hex representation for 1,234

6 register “r6”
3 register “r3” (the destination)

A “synthetic instruction” does not correspond to exactly one machine instruction.
Instead, the assembler will translate synthetic instructions into machine
instructions that perform the desired operation.	

For example, the following synthetic instruction:	

neg r7,r3 # r7 ← -(r3)

will be translated into this machine instruction:	

sub r7,r0,r3 # r7 ← 0-r3

Blitz-64 Instruction Set Architecture / Porter	 Page of 	28 284

Chapter 2: Assembler Syntax	

It will assembled as if the programmer had used the subtract instruction instead.
(Note that register “r0” always contains the the value zero.)	

The translation of a synthetic instruction will usually be to a single machine
instruction. However, some synthetic instructions will require several machine
instructions and may require as many as four instructions.	

For example, the following synthetic instruction:	

movi r1,0x1122334455667 # r1 ← very large value

will be translated into the following sequence of three machine instructions:	

upper20 r1,0x11223
shift16 r1,r1,0x3445
xori r1,r1,0x5667

Assembler Pseudo-ops	

A pseudo-op looks very similar to an instruction since it has an opcode and
operands.	

Pseudo-ops can be easily recognized because they all begin with a period. The
pseudo opcodes are:	

.byte

.halfword

.word

.doubleword

.float

.string

.skip

.align

.export

.import

.equ

.begin

Blitz-64 Instruction Set Architecture / Porter	 Page of 	29 284

Chapter 2: Assembler Syntax	

(In addition, there are several pseudo-ops associated with debugging; these are
listed and discussed in a later chapter.)	

The period is part of the opcode keyword. Spaces are not allowed after the period.	

Machine and synthetic instructions are assembled into binary codes that, when
executed, tell the processor what to do. Pseudo-ops are not translated into machine
instructions to be executed at runtime. Instead, pseudo-ops are used to tell the
assembler what to do and how to produce the object code.	

Pseudo-ops are sometimes called “assembler directives”.	

.byte, .halfword, .word, .doubleword	

The .byte, .halfword, .word, and .doubleword pseudo-ops are used to allocate 1, 2,
4, and 8 bytes, respectively. For example:	

MyVar: .doubleword 654321 # Allocate and initialize 8 bytes

A single operand (which is an expression) is required. The expression specifies an
integer value which will be placed in memory before execution begins.	

another: .doubleword (789*5)<<6 # equal to 0x000000000003DA40

Blitz-64 Instruction Set Architecture / Porter	 Page of 	30 284

Chapter 2: Assembler Syntax	

The expression may include values written in decimal or hex, as well as symbolic
constants. The expression appearing in the operand field may use:	

(expression grouping
) expression grouping
+ addition and unary plus
- subtraction and unary minus
* multiplication
/ integer divison
% remainder after division
& bitwise AND
| bitwise OR
^ bitwise XOR
! bitwise NOT
<< shift left logical
>> shift right logical
<<< shift left arithmetic
>>> shift right arithmetic

The expression will be evaluated and the value will be computed by the assembler
and not at “run-time”.	

All expression evaluation will be performed using 64 bit signed integers. If the final
value fails to be within the allowable range for the pseudo-op, the assembler will
issue an error message.	

	 	 Size	 	
	 	 in bytes 	 Range of values 	 	
.byte	 1 	 -128 … 127	
.halfword	 2	 -32,768 … 32,767	
.word	 4	 -2,147,483,648 … 2,147,483,647	
.doubleword	 8	 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807	

If a label precedes a pseudo-op or instruction, that symbol will be associated with
the address of the thing that follows. (More precisely, the symbol will be associated
with the address of the first byte of the thing that follows.) The label may appear on
the same line or on the preceding line.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	31 284

Chapter 2: Assembler Syntax	

For example, this	

myVar: .doubleword 0x0123456789abcdef

is equivalent to:	

myVar:
.doubleword 0x0123456789abcdef

The requirements for alignment in Blitz-64 are discussed elsewhere. In short, data
should be properly aligned:	

	 • Halfword data should be halfword-aligned	
	 • Word data should be word-aligned	
	 • Doubleword data should be doubleword-aligned	

There is no alignment requirement for byte-sized data.	

If the data is improperly aligned, an exception will be generated at runtime and the
instruction will invoke an emulation routine. There will be a very heavy
performance penalty for this. Therefore, the programmer should strive to ensure
that all variables are properly aligned.	

The .align instruction can be used for this purpose. One approach is to proceed each
data variable with an .align instruction:	

var1: .byte 0x01
.align 2

var2: .halfword 0x0123
.align 4

var3: .word 0x01234567
.align 8

var4: .doubleword 0x0123456789abcdef

A simple programming trick is to place all doubleword data first, then all word data,
then all halfword data, and finally all byte data. Only a single .align is required at the
beginning:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	32 284

Chapter 2: Assembler Syntax	

.align 8
var4: .doubleword 0x0123456789abcdef
var3: .word 0x01234567
var2: .halfword 0x0123
var1: .byte 0x01

The .halfword, .word, .doubleword, and .float instructions may be used at
unaligned locations. The assembler will not issue warnings.	

For the value of the .byte, .halfword,.word, and .doubleword pseudo-ops, the
programmer may use either absolute value or may use addresses and symbols,
which may be defined in the same file or imported from another .s source file. For
example:	

.doubleword MyLabel+4

.doubleword ExternSymbol

In such cases, the linker will not be able to compute the value and will defer to the
linker, which will compute and fill in the final values.	

The linker computes all values using 64 bits and may compute any value within this
range. However, for .byte, .halfword, and .word pseudo-ops, there may be
insufficient space to contain the value. Therefore, for .byte, .halfword, and .word
pseudo-ops, the linker may report an error such as:	

The computed value of a HALFWORD instruction is not within -32,768 ... +32,767
(i.e., 0x8000 ... 0x7FFF).	

The linker will also print additional information, including filename, line number,
symbol name, and the offending value.	

.float	

The .float pseudo-op is used to allocate 8 bytes and fill it with the IEEE
representation of a double-precision (i.e., 64-bit) floating point number. The
operand should be a floating point constant. Expressions are not supported.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	33 284

Chapter 2: Assembler Syntax	

Examples of floating point constants:	

.float 123.456

.float -3.4E-21

.float +4.5e+21

It should be noted that Blitz-64 supports only double-precision floating point
arithmetic; single-precision is not supported.	

See the above comments regarding alignment. The assembler will not issue a
warning when the .float instruction occurs on an improperly aligned address.	

.string	

The .string pseudo-op is used to place character data in memory.	

Escapes (such as \n) can be used. These were described previously.	

The string is not null-terminated. If desired, the null character can be included in
two ways. For example:	

str: .string "Bye\0"

is equivalent to:	

str: .string "Bye"
.byte 0

The characters are Unicode characters encoded in UTF-8. For example the following
are equivalent. Since the UTF-8 encoding of “é” is the two byte sequence 0xC3A9,
both will place 5 bytes in memory.	

.string "café"

.string "caf\xc3\xa9"

Unicode and UTF-8 are described in a separate document titled “An Overview of
Unicode”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	34 284

Chapter 2: Assembler Syntax	

.skip	

The .skip pseudo-op causes the assembler to skip over a number of bytes, without
specifying initial values. The operand is an expression which is evaluated at
assembly time.	

The bytes are guaranteed to be filled with zeros before execution begins.	

If a label precedes the .skip pseudo-op, then that symbol is associated with the
address of the first byte in the block of bytes allocated by the .skip pseudo-op.	

Typically, a .skip instruction is used to define the memory region to be used for a
large data structure, such as an array:	

MyArray: .skip 1000

However a .skip instruction can be used for any variable. In KPL, all variables are
guaranteed to be initialized to zero values.	

MyVarWord: .word 0
MyVarWord: .skip 4 	← equivalent

If the .skip instruction appears in a segment that is marked “zero-fill”, then no bytes
are actually stored in the object file. (The initializing zeros are generated at runtime
when the program is loaded into memory.) Otherwise, the object file will contain N
bytes, all filled with zero. Consequently, the programmer should normally place
uninitialized variables in a zero-filled segment, particularly if they are large.	

This expression used in a .skip instruction cannot rely on imported values or values
that cannot be determined easily by the assembler.	

[By “easily”, we mean this. Several synthetic instructions depend on addresses and
changes to addresses can, in some cases, change the number of machine instructions
required for a synthetic instruction. The .skip instructions are evaluated before such
synthetic instructions are evaluated. However, in some cases, the values of
expressions can depend on addresses, and the translation of synthetic instructions
may change addresses. The .skip pseudo-op cannot rely on values that cannot be
determined early in the assembly. This is only an issue for pathological programs;
normally the value for a .skip instruction is a simple integer.]	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	35 284

Chapter 2: Assembler Syntax	

.align	

The .align pseudo-op is used to insert padding bytes to force the next following
thing to be aligned.	

In the following example, the string may end on an improperly aligned address;
the .align pseudo-op will insert as many bytes as necessary to guarantee that the
variable “x” is properly aligned.	

str: .string “hello”
.align 8

x: .doubleword 0x0123456789abcdef

The padding bytes inserted by .align are guaranteed to be zero-filled.	

The operand for .align may be 2, 4, 8, 16, or 32. The keyword “page” may be used as
the operand, instead of an integer:	

.align page

The “.align page” instruction will add padding bytes as necessary to round up to the
next page aligned address, i.e., to an address that is a multiple of 16,384 (i.e., a
multiple of 16 KiBytes and in which the least significant 14 bits are zeros).	

The .align statement will insert only as many bytes as necessary. If the address is
already aligned, then no bytes will be inserted. The inserted bytes are guaranteed to
have value 0x00.	

The .align statement is not normally preceded by a label. However, if a label is
present, it will label the first padding byte. If no padding is inserted, the label will
label will be associated with the address of the following byte.	

In the following example, the value of “strX” will be 5 greater than the value of “str”,
regardless of how many bytes are inserted by the .align:	

str: .string "hello"
strX: 	

.align 8

Blitz-64 Instruction Set Architecture / Porter	 Page of 	36 284

Chapter 2: Assembler Syntax	

The assembler will keep track of all alignment up to word alignment and can fully
process the following two types of .align. The assembler will effectively transform
these into the necessary .skip instructions.	

.align 2

.align 4

The following cannot be fully handled by the assembler and must be passed to the
linker.	

.align 8

.align 16

.align 32

.align page

[When expanding synthetic instructions, the linker may move data and instructions
in memory. However, the linker will always insert and move in multiples of 4. Thus,
word-alignment will be preserved.]	

Instructions must be halfword aligned. At runtime, the Blitz-64 program counter
(PC) will always contain an even number by hardwiring the final bit to 0. Thus,
alignment is forced and no exception is possible.	

Since the assembler keeps track of halfword and word alignment, it can detect any
attempt by the programmer to place an instruction at an odd (non-halfword aligned)
address, and will issue a warning.	

Often, the programmer will place an “.align 2” instruction directly before a code
sequence (such as a function) to make certain the instructions in the function are
aligned properly, regardless of what preceded the code sequence.	

.export	

This pseudo-op expects a single symbol as an operand. This symbol must be given a
value in this file, either with an .equ instruction or used as a label. This symbol with
its value will be placed in the object file and made available to other assembler
source programs during linking.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	37 284

Chapter 2: Assembler Syntax	

For example:	

.export MyFun

.align 4
MyFun: add

…
ret

.export MyConstant
MyConstant: .equ 100

The .export instruction may appear before or after the line that defines the symbol,
as the programmer prefers. There must be no label on the same line as this
instruction.	

If a symbol is not exported, then that symbol may only be used within the assembly
source code file in which it is defined. Other files are free to define, export, and
import symbols with the same spelling. As long as the symbol is not imported in the
current file, these other files will define and use separate, unrelated symbols that are
not visible in the current file.	

.import	

This pseudo-op expects a single symbol as an operand. This symbol must not be
given a value in this file; instead it will receive its value from another assembly
source file during linking. All uses of this symbol in this file will be replaced by that
value by the linker.	

For example:	

.import OtherFun
call OtherFun

The .import instruction may appear before or after lines that use the symbol, as the
programmer prefers. There must be no label on the same line as this instruction.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	38 284

Chapter 2: Assembler Syntax	

A symbol must not be both imported and exported. Every symbol used in a given
source code file will either be:	

	 • imported	
	 • exported	
	 • local only	

.equ	

A symbol may be given a value with an “equate” instruction:	

	 symbol :	 .equ	 expression	

The expression may give an absolute value or a relocatable address. For example:	

Val_123: .equ MyConstant+23 ← specifies absolute value 123
MyAddr: .equ MyFun+8 ← specifies an address

The expression may use symbols that are defined later in the file.	

A line containing an .equ instruction must begin with a symbol followed by a colon.
(In all other situations, the symbol in the label field of an instruction will be given as
its value, the address of the instruction. However, in the case of an equate, the
symbol is being associated with the result of the expression evaluation.)	

X: .word 100 ← X = address of 4 bytes containing 100
Y: .equ 100 ← Y = 100; no memory or addresses are involved

Some expressions may depend on the value of addresses:	

Z: .equ X+4 ← Z = address of the bytes following variable X	

In some cases, the value cannot be computed by the assembler and the evaluation of
such expressions must be deferred to the link stage.	

In the following example, the assembler is unable to transform a synthetic jump
because the target location is defined in another file. The assembler cannot

Blitz-64 Instruction Set Architecture / Porter	 Page of 	39 284

Chapter 2: Assembler Syntax	

determine whether to produce one or two machine instructions, so it leaves that
task to the linker. As a result, the assembler is not able to determine the value to be
associated with “W”. This can cause an error if the symbol is used in a context where
the assembler must know the value, such as an instruction which requires an
immediate value. Since the assembler must be able to guarantee that the value will
fit into the available space (i.e., a 16 bit immediate field), the assembler must be able
to determine the value at assembly time. In practice, code sequences like this are
unlikely to occur and will not be produced by the KPL compiler.	

Addr1: …
jump ExtLab ← Could be one or two instructions	

Addr2: …

W: .equ Addr2-Addr1 ← Can’t compute until link time

 addi r1,r2,W ← Error: must know the value at asm time

.begin	

The .begin pseudo-op tells the assembler when to produce a segment of code and is
used to associate several parameters with the segment.	

Many programs will contain only a single .begin pseudo-op and the programmer
will place it at the beginning of the assembly code source file.	

Segments are described later, in a separate chapter.	

The .begin pseudo-op has an operand field that can contain a number of comma-
separated parameters.	

.begin parameter , parameter , parameter , parameter

For example:	

.begin startaddr=0x8000a0000,executable,writable

Blitz-64 Instruction Set Architecture / Porter	 Page of 	40 284

Chapter 2: Assembler Syntax	

The following parameters are indicated by a keyword, which is either present or
absent.	

kernel
executable
writable
zerofilled

The programmer may also include a “startaddr=” parameter:	

startaddr=value	

The programmer may also include a “gp=” parameter:	

gp=value	

Segments are not given names and there must be no label on the .begin instruction.
Any label directly preceding a .begin pseudo-op will be associated with an address
in the previous segment.	

As an example to illustrate this, the value of “strEnd” will be an address, namely
“strStart+5”. The value of “msg” will also be an address, but will very likely be
different from “strEnd” since the linker will place the new segment at somewhere
different. Perhaps the new segment will be placed directly following the bytes
“hello”, but this is not guaranteed. In any case, the assembler will treat “strEnd” and
“msg” differently because they are in different segments.	

strLen: .equ strEnd-strStart
strStart: .string “hello”
strEnd:

.begin
msg:

.string “world"

Blitz-64 Instruction Set Architecture / Porter	 Page of 	41 284

Chapter 3: Symbols and Expressions	

Quick Summary	

• A symbol may be defined in two ways: 	
	 • A label on an instruction defines a new symbol.	
	 • The .equ pseudo-op equates a symbol to the value of an expression.	
• The value of a symbol will either be an absolute value or relocatable address .	
• The assembler can usually evaluate and determine relative offsets.	
• Some expressions using addresses may require finalization by the linker.	
• A symbol may also be imported, in which case its value is unknown.	
• Use of imported symbols will require finalization by the linker.	
	 • Errors involving imported symbols may not be detected until link time.	
• Expressions may use the usual operators: +, -, <<, >>, &, |, …	
• Operator precedence follows traditional languages (C, Java, …).	
• Expressions are used in instructions that take immediate values.	
• Expressions are used in .byte, .halfword, .word, .doubleword, and .skip.	
• All expression evaluation is done using signed, 64 bit integer arithmetic.	
• In situations requiring fewer bits, the assembler will detect overflow errors.	

Symbols	

The assembler builds a symbol table, mapping identifiers to values. Each symbol is
given exactly one value. There is no notion of scope or lexical nesting levels, as in
high-level languages.	

Each symbol is given a value which will be either:	

	 absolute	
	 relative	
	 external	

Blitz-64: Assembler and Linker / Porter	 Page of 42 284

Chapter 3: Symbols and Expressions	

An absolute value consists of a 64-bit quantity. A relative value consists of a 64-bit
(signed) offset relative to either a segment or to an external symbol. An external
symbol will have its value assigned in some other assembly file and its value will not
be available to the code in this file until link time. However, an external symbol may
be used in expressions within this file; the actual data will not be filled in until link
time.	

Symbols may be defined internally or externally. If a symbol is used in this file, but
not defined, then it must be “imported” using the .import pseudo-op. If a symbol is
defined in this file and used in other files, then it must be “exported" using
an .export pseudo-op. If a symbol is not exported, then its value will not be known
to the linker; if a symbol is imported in some files but never exported, then an
“undefined symbol” error will be generated at link time.	

If a symbol is neither exported nor imported, it will be entirely local to a single .s file.
Another file may define another symbol with the same spelling without any
confusion; it will be an entirely distinct symbol.	

Within a file, a symbol may be defined either…	

	 as a label	
	 in an equate	

A symbol may be defined by being used as a label, in which case it is given a value
which consists of an offset relative to the beginning of whichever segment is current
when the label is encountered. This is determined by whether the .begin pseudo-op
was seen last, before the label was encountered. Each label occurs in a segment and
names a location in memory. At link time, the segments are placed in their final
positions in memory. Only at link time does the actual address of the location in
memory become known. At this time, the label is assigned an absolute value by the
linker.	

When a symbol is defined using the .equ pseudo-op, it is given a value equal to the
value of some expression, possibly involving other symbols.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	43 284

Chapter 3: Symbols and Expressions	

Labels	

The label on any instruction will define a new symbol, and the symbol will be given
an offset relative to the beginning of the current segment.	

Labels defined in the current file may be exported and labels defined in other files
may be imported.	

A label will name an address in memory, and as such a label cannot be given a final
value until link time.	

During the assembly of the current file, labels in the file are given offsets relative to
the beginning of the segment in which they appear.	

Equates	

An .equ pseudo-op must contain a label and an expression. For example:	

MAX: .equ 1000*8

The symbol defined in an equate may be exported.	

The expression may involved various operations and other symbols, as in:	

SYM_2: .equ MAX + 0x18_0000

Blitz-64 Instruction Set Architecture / Porter	 Page of 	44 284

Chapter 3: Symbols and Expressions	

Expression Syntax and Evaluation	

Instructions and pseudo-ops may use expressions as operands. Expressions may be
occur in:	

	 .byte	
	 .halfword	
	 .word	
	 .doubleword	
	 .skip	
	 .equ	
	 various Blitz-64 instructions	

The syntax of expressions is given by the following context-free grammar.	

	 expr	 ::=	 expr1 { “|” expr1 }	
	 expr1	 ::=	 expr2 { “^” expr2 }	
	 expr2	 ::=	 expr3 { “&” expr3 }	
	 expr3	 ::=	 expr4 { (“<<” | “>>” | “<<<” | “>>>”) expr4 }	
	 expr4	 ::=	 expr5 { (“+” | “-”) expr5 }	
	 expr5	 ::=	 expr6 { (“*” | “/” | “%”) expr6 }	
	 expr6	 ::=	 “+” expr6 | “-” expr6 | “!” expr6	
	 	 	 	 | ID | INTEGER | STRING | “(” expr “)”	

[In this grammar, the following notation is used. The characters enclosed in double
quotes are terminals in the grammar. The braces { } are used to mean “zero or more”
occurrences. The vertical bar | is used to mean alternation. Parentheses are used for
grouping. The start symbol is “expr”.]	

This syntax results in the following precedences and associativities:	

	 highest:	 ! unary+ unary- 	 (right associative)	
 	 	 * / %	 (left associative)	
	 	 + -	 (left associative)	
	 	 << >> <<< >>>	 (left associative)	
	 	 &	 (left associative)	
	 	 ^	 (left associative)	
	 lowest:	 |	 (left associative)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	45 284

Chapter 3: Symbols and Expressions	

For example,	

a + b * c

is equivalent to:	

a + (b * c)

Likewise,	

a + b >> - ! c & d * e

is equivalent to:	

((a + b) >> (- (! c))) & (d * e)

If a string is used in an expression, it must have exactly 8 bytes. The string will be
interpreted as a 64 bit integer, based on the ASCII values of the 8 characters, or the
UTF-8 encodings for non-ASCII characters. With strings, Big Endian order is used:
the first character will determine the most significant byte.	

The following operators are recognized in expressions:	

	 unary+	 nop	
	 unary-	 64-bit signed arithmetic negation	
	 !	 64-bit logical negation (NOT)	
	 *	 64-bit multiplication	
	 /	 64-bit integer division with 64-bit integer result	
	 %	 64-bit modulo, with 64-bit result	
	 binary+	 64-bit signed addition	
	 binary-	 64-bit signed subtraction	
	 <<	 left shift logical (i.e., zeros shifted in from right)	
	 >>	 right shift logical (i.e., zeros shifted in from left)	
	 <<<	 left shift arithmetic (i.e., error if loss of significant bits)	
	 >>>	 right shift arithmetic (i.e., sign bit shifted in on left)	
	 &	 64-bit logical AND	
	 ^	 64-bit logical Exclusive-OR	
	 |	 64-bit logical OR	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	46 284

Chapter 3: Symbols and Expressions	

With the shift operators (<<, >>, <<<, and >>>) the second operand must evaluate to
an integer between 0 and 63. The logical shift operators (<<, >>) will shift in 0 bits.
The right shift arithmetic operator (>>>) will shift sign bits in on the left. The left
shift arithmetic operator (<<<) will treat the argument as a signed integer and will
signal an error if significant bits are shifted out.	

With the division operators (/ and %), the first operand must be non-negative and
the second operand must be positive. (In the “C” language, the/ and % operators
have machine-dependent results with negative operands.)	

All operators except addition and subtraction require both operands to evaluate to
absolute values, which can be determined by the assembler. All arithmetic is done
with signed 64-bit values.	

If the next two paragraphs are confusing, just look at the examples.	

The addition operator + requires that at least one of the operands evaluates to an
absolute value. The other operand may be an address. If one operand is an address,
then the result will be relative to that location. Thus, the assembler will be unable to
determine the value and the linker (which will place the segments in memory) will
be required to determine the exact value.	

For the subtraction operator, the first operand may be an absolute value or an
address. If the first operand is an absolute value, then the second must also be an
absolute value. If the first operand is an address and the second is an absolute value,
then the result will be relative to that address. If both operands are addresses, the
result will be an absolute value, which represents the difference in bytes between
the two addresses.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	47 284

Chapter 3: Symbols and Expressions	

Lab_1: add r1,r2,r3 ← Lab_1 is a relocatable address
…

Lab_2: add r1,r2,r3 ← Lab_2 is a relocatable address
…

max: .equ 100 ← max is an absolute value
…

u: .equ Lab_1 + 8 ← The value is a relocatable address
v: .equ 8 + Lab_1 ← The value is a relocatable address
bad_1: .equ Lab_1 + Lab_2 ← Error, not allowed
w: .equ max + 8 ← The value is an absolute value
x: .equ max - 8 ← The value is an absolute value
y: .equ Lab_1 - 8 ← The value is a relocatable address
z: .equ Lab_2 - Lab_1 ← The value is an absolute value
bad_2: .equ 8 - Lab_2 ← Error, not allowed

An attempt is made to evaluate all expressions at assembly-time. If the expression
cannot be evaluated at assembly time, the problem is passed on to the link stage.	

The following will prevent an expression from being evaluated at assembly time.	

	 • The expression depends on symbols which are imported.	
	 • The expression depends on the value of an address.	

Here are the instructions which might depend on the value of an address:	

	 movi
jump
call
bXXX
loadX
storeX

In most uses of the above instructions, the assembler will be able to determine the
exact offset and produce the final machine code translations. However, in some
cases, the assembler will be unable to complete the translation of the instruction
and must pass the task on to the linker.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	48 284

Chapter 3: Symbols and Expressions	

This happens whenever one of the above instructions uses an address and the
assembler cannot determine the exact offset between the instruction and the target
address. Whenever the assembler is unable to produce the final machine code, the
linker will be required to complete the translation.	

Pseudo-ops such as .word and .doubleword may also use expressions which
contain values that cannot be determined until link time.	

An expression may evaluate to either an absolute 64-bit value, or may evaluate to a
relocatable value. A relocatable value is a 64-bit offset relative to some symbolic
address. If the expression evaluates to a relocatable value (i.e., an address), its
absolute value cannot be determined until link time.	

At link time, the absolute locations of the segments will be determined and the
absolute values of all symbols will be determined. At link time, the final, absolute
values of all expressions will be determined by adding the offsets to the addresses
assigned to the relocatable symbols.	

The .skip pseudo-op requires the expression to evaluate to an absolute value.	

In the case of the .equ pseudo-op, the expression may evaluate to either a
relocatable address or an absolute value. In either case, the equated symbol will be
given a relocatable or absolute value (respectively). The actual value may not be
determined until at link time. Normally, the symbol would be used in other
instructions, and the computed value will be placed in the appropriate bytes in
memory at link time.	

NOTE: At this time, all instructions except synthetic instruction of format S-1, …, S-7
require expressions to have an absolute value that can be determined by the
assembler before linking. Here are the instructions with formats S-1, …, S-7:	

	 movi
jump
call
bXXX
loadX
storeX

All other instructions require values that must be computable by the assembler
alone.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	49 284

Chapter 3: Symbols and Expressions	

NOTE: In the case of a subtraction expression where both operands are addresses,
the assembler must be able to determine the relative offset between the two
addresses. The computation will not be passed on to the link stage. While the
assembler is not required to know the actual addresses involved in the subtraction,
it must be able to determine the exact size of everything between the two addresses.
This is because the assembler must be able to compute the difference between the
addresses. This requires that all of the following conditions hold: (1) Both addresses
must be in the same segment. (2) If any synthetic instructions fall between the two
addresses, the assembler must be able to fully determine the length of the
translations, if not their exact translations. (3) If any .align instructions fall between
the two addresses, the assembler must be able to fully resolve them. This means that
only halfword and word .align instructions may be used between the two addresses;
larger .aligns cannot be fully translated by the assembler and must wait for the link
stage.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	50 284

Chapter 4: Segments	

Quick Summary	

• The linker combines segments to produce an executable file.	
• Each assembly source file will contain one or more segments.	
• Segments are identified with the .begin pseudo-op.	
• All the bytes in each segment are contiguous and placed in memory as a unit.	
• Segments contain instructions and data bytes.	
	 	 • Every instruction and data byte is in exactly one segment. 	
• A segment may be pinned to a specific location or may be relocatable.	
• A segment may be marked as executable or not.	
• Each segment is either read-only or read-write.	
• The “gp” register is used to make addressing faster.	
	 	 • Most accesses to static data can be done in a single gp-relative instruction.	

Segments	

The linker will place code and data into pages of memory. Each page of virtual
address space will be marked either executable or not, and each page will be marked
either writable or not. With the Blitz-64 hardware design, any page that is mapped
into the virtual address space will be readable, so there is no such status as “present,
but not readable”.	

Each assembly code source file consists of a sequence of “segments”. Each segment
starts with a “.begin” pseudo-op and consists of a sequence of instructions. The
segments are listed one-after-the-other in the source code file. Thus, every line in
the source file will belong to exactly one segment.	

An assembly source file will typically contain just a couple of segments, and
sometimes only a single segment. For example a given assembly source file might
contain two segments: The first segment contains instructions and these bytes will

Blitz-64: Assembler and Linker / Porter	 Page of 51 284

Chapter 4: Segments	

go into pages marked “executable” but not “writable”. The second segment contains
data and variables, and these bytes will go into pages marked “writable” but not
“executable”.	

A segment may have any size, although the assembler will round each segment up to
a multiple of 8 bytes, by appending padding zeros at the end as necessary. A segment
size of zero is possible, but pointless.	

[Note: When we referred to the “size of the segment” in the previous paragraph, we
meant the size as the assembler determines it and the number of bytes it puts in
the .o object file. Later, when the linker is processing a segment, the linker may
insert bytes in the course of translating synthetic instructions and processing .align
pseudo-ops. Thus, the size of the segment may be changed by the linker and may no
longer be a multiple of 8 bytes. Although the assembler adds padding bytes to the
segment, it would probably have been a better design if the assembler did not add
those bytes. Instead, the assembler ought to add “padding bytes” to the .o object file
after the segment data. These padding bytes would be to ensure that the following
fields in the .o file are properly aligned, and would not increase the size of the
segment itself.]	

When placed in memory, each segment will be placed on a doubleword aligned
address. A single page of memory may contain parts of several segments.	

The term “segment”, as used here, is a purely software concept used only by the
assembler and linker; at runtime there is no such thing as a segment. (Other
computer systems have used the term “segment” differently, e.g., for regions of
memory supported by various hardware features.)	

The purpose of the “.begin” pseudo-op is delineate segments and to specify some
parameters that apply to the segment, like “writable” or “executable”.	

Below is a small, artificial example, representing a single assembly source code file
containing three segments:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	52 284

Chapter 4: Segments	

.begin executable
entry: loadd r1,myVar

addi r1,r1,300
stored myVar,r1
ret

.begin writable
myVar: .doubleword 12345
other: .doubleword 200

.begin
str: .string “Hello”

.byte 0
xor r1,r2,r3

Each segment must start with a .begin pseudo-op. A segment runs from a .begin
pseudo-op until just before the next .begin pseudo-op, or until the end-of-file. Every
instruction and every other pseudo-op will be located in exactly one segment, based
on where it is placed.	

There is no requirement that an “executable” segment contains only machine
instructions; it may contain data as well. There is no requirement that a “writable”
segment contains only data; it may contain machine instructions as well.	

In this example, the third segment is marked with neither executable nor writable. It
contains a string and an XOR instruction. This segment is not executable and the
XOR instruction cannot be executed.	

The .begin pseudo-op has an operand field that can contain a number of comma-
separated parameters.	

.begin parameter , parameter , parameter , parameter

For example:	

.begin startaddr=0x8000a0000,executable,writable

Blitz-64 Instruction Set Architecture / Porter	 Page of 	53 284

Chapter 4: Segments	

The following parameters are indicated by a keyword, which is either present or
absent.	

kernel
executable
writable
zerofilled

The programmer may also include a “startaddr=” parameter:	

startaddr=integer	

The programmer may also include a “gp=” parameter:	

gp=integer	

The “value” associated with a “startaddr=” or “gp=” parameter must be an integer;
expressions are not allowed. Normally, this value is expressed in hex, but decimal is
also okay. The following (in which “undefined” is a keyword recognized by the
assembler) is also allowed:	

gp=undefined	

The parameters can be given in any order.	

Segments are not given names and a source line containing .begin must not contain
a label. Any label directly preceding a .begin pseudo-op will be associated with an
address in the previous segment.	

The job of the linker is to determine where in memory to place the segments. More
specifically, the input to the linker will be a number of object files, each containing a
number of segments. These segments must be placed into memory pages. One
constraint is that two segments with different executable/writable attributes may
not be placed in the same page. Another constraint is that segments may not
overlap. The linker will attempt to pack segments close together in order to reduce
the number of pages in the final memory image.	

Normally, the linker will be free to choose the location of a segment. However, the
programmer may demand that the linker place a segment at a given memory
address. This is the purpose of the “startaddr=” parameter, which gives the starting
address of the segment as an absolute value. This parameter forces the linker to

Blitz-64 Instruction Set Architecture / Porter	 Page of 	54 284

Chapter 4: Segments	

place a segment at a particular location in memory. The startaddr= value must be a
doubleword aligned address.	

If there is no starting address given for a segment, the linker is free to place the
segment where it best fits. By default, the linker will place segments in the virtual
address region, which starts at 0x8_0000_0000. The linker will more-or-less place
segments one after another, filling up the virtual address space from 0x8_0000_0000
on up, within the previously mentioned constraints.	

However, the presence of the “kernel” keyword will force the linker to place the
segment in the lower, physical region of address space. Segments with this keyword
will be placed in low memory, starting with 0x0_0000_0000 and going up.	

The “zerofilled” keyword is used to indicate that a segment will contain only zeros.
Thus, only the following are allowable in a “zerofilled” segment:	

.byte 0

.halfword 0

.word 0

.doubleword 0

.float 0.0

.skip <any>

.align <any>

.equ <any>

.import <any>

.export <any>

The data in zerofilled segments is not present in the object and executable files,
since the pages can be created and initialized at the time the executable file is loaded
into memory. Zerofilled segments are useful for large data structures (such as
gigantic arrays, spaces for heaps, and so on), since these data structures would
waste a large amount of space in the object and executable files.	

For example:	

.begin startaddr=0x900000000,writable,zerofilled
MyHeap: .skip 0x100000000 # 4 GiBytes

The assembler will round each segment up in size to a multiple of 8 bytes, by adding
1 to 7 bytes of 0x00, as necessary. The linker will place each segment on an aligned 8

Blitz-64 Instruction Set Architecture / Porter	 Page of 	55 284

Chapter 4: Segments	

byte address. Or, to put it another way, the linker will assign to each segment a
doubleword aligned address, where the bytes will be placed when the executable is
loaded at runtime.	

Note that in Unix/Linux systems, segments are given names such as	

.text	

.data	

.rodata	

.bss	

Blitz doesn’t do it this way. Unix/Linux confuses segment attributes with the
segment names. We see no good reason to name segments in the first place.	

The Global Pointer Register, gp	

Several of the synthetic instructions include an operand that can be an “address”.
Examples include:	

	 beq	 Reg1,Reg2,address	
	 loadb	 Reg1,address	
	 storew	 address,Reg2	
	 call	 address	
	 jump	 address	
	 movi	 Reg1,address	

In the course of generating code, the assembler and linker must be able to translate
memory addresses into the forms required by the machine instructions. For
example, consider this line from an assembly source file:	

loadb r1,MyVar

Assuming the address of MyVar is within 0 … 0x0_0000_7fff, then the above
instruction can be assembled as:	

load.b r1,0x7fff(r0)

Blitz-64 Instruction Set Architecture / Porter	 Page of 	56 284

Chapter 4: Segments	

The virtual address space starts at 0x8_0000_0000. Thus, this optimization only
works for programs running in kernel mode, since user programs cannot access data
using addresses that are not in the virtual memory region.	

However, the global pointer register (gp) is intended to be used for the same
purpose, making a range of addresses in the virtual address region particularly
quick to access.	

For user programs running in a virtual address space, the default assumption is that
the global pointer register (gp) will contain the value 0x8_0000_8000 at runtime.	

In order for this to work, the gp register will be initialized either by the kernel
during thread-creation or within the first couple of instructions at thread-startup, as
part of the thread initialization prologue.	

User programs typically place their data at the beginning of the virtual address
space, i.e., at 0x8_0000_0000. If register gp contains 0x8_0000_8000 — which it
normally will — then accessing any data within the first 64 KiBytes can be done
with only one instruction. 	

For kernel code programs, the default assumption is that the global pointer register
(gp) will contain the value 0x0_0001_0000. In combination with register r0, this
makes accessing data in the first 96 KiBytes of memory especially efficient. (For the
first 32 KiBytes, we use a positive offset from r0 and for the following 64 KiBytes we
use an offset from gp.) 	

By assuming the gp register contains one of these known values, the assembler and
linker can generate shorter code sequences when translating some synthetic
instructions.	

The “gp=” parameter tells the assembler and linker what value will be in the register
gp at runtime.	

The keyword “undefined” can also be used to override any assumption about the
contents of the gp register. In this case, the assembler and linker will not make any
assumption about the contents of the gp register for any instructions in that
segment. This would be used for code in which the gp register (i.e., register r13) is
used for an entirely different purpose.	

.begin gp=undefined

Blitz-64 Instruction Set Architecture / Porter	 Page of 	57 284

Chapter 4: Segments	

When the assembler is synthesizing a MOVI instruction and the value to be loaded is
within a certain range of values, the assembler may use gp, as shown in the
following example.	

Consider the following code:	

movi r1,MyVar # Load address into reg
…

Put data segment in the usual place:
.begin startaddr=0x800000000,writable

Arr: .skip 0x84D0 # Size = 34,000 bytes
MyVar: .doubleword 1234

The MOVI instruction is a synthetic instruction which moves the address of a
variable into a register. The address of “MyVar” is 	

 0x8,0000,84D0
= 0x8,0000,0000 + 0x84D0
= 0x8,0000,8000 + 0x04D0

Since the assembler can assume that gp contains 0x8_0000_8000, it can translate
the MOVI into a single ADDI instruction, exactly as if the programmer had coded
this:	

addi r1,gp,0x04D0

Without this assumption about gp, the assembler would be forced to use two
instructions, such as:	

upper20 r1,0x80000
addi r1,r1,0x84D0

(This example was simplified. Actually XORI would be used and we failed to account
for sign extension properly, but you get the idea.)	

More precisely, positive offsets will be used for addresses above 0x8_0000_8000 and
negative offsets will be used for addresses below that:	

	 8_0000_0000 … 8_0000_7fff	 negative offset 8000 … ffff from gp	
	 8_0000_8000 … 8_0000_ffff	 positive offset 0 … 7fff from gp	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	58 284

Chapter 4: Segments	

The assembler/linker can deal with arbitrary addresses, but addresses outside this
range might require additional instructions or the use of the temp register “t”.
Therefore, the programmer is encouraged to place commonly used variables at the
bottom of the virtual address space, in the first 64 KiBytes. The typical practice
would be to place all static, non-stack data at the bottom of the virtual address
space, with the code segments in pages following the data pages.	

The above comments about register gp apply not only to MOVI but also to LOAD and
STORE instructions. LOAD and STORE are used to access data in static, fixed memory
locations. Thus, the gp-relative addressing scheme of Blitz-64 enables the vast
majority of accesses to static data variables to be performed with a single
instruction.	

The BRANCH (Bxx), JUMP, and CALL instructions also use arbitrary addresses as
targets. For them, PC-relative addressing is more common. However, the gp-relative
addressing mechanism is still present and gp-relative jumps can be generated
whenever the target address happens to be in low memory. As a consequence, it
might make sense to place jump tables in low-memory, so the code can easily branch
to various entries.	

Kernel code will not be running in a virtual address space, so things are different. All
addresses will be located in the physical memory region.	

For kernel code, the gp register is assumed to be initialized to 0x0_0001_0000. This
means that any address in the first 6 pages (i.e., the first 96 KiBytes of memory, 0 …
0x0_0001_7fff) can be accessed with a single instruction:	

	 0_0000_0000 … 0_0000_7fff	 offset 0 … 7fff from r0	
	 0_0000_8000 … 0_0000_ffff	 negative offset 8000 … ffff from gp	
	 0_0001_0000 … 0_0001_7fff	 positive offset 0 … 7fff from gp	

If the “kernel” keyword is present in the .begin pseudo-op, the default assumption
is that register gp will contain the value 0x0_0001_0000. If the “kernel” keyword is
not present, the assumption is that gp contains 0x8_0000_8000.	

If, for some reason, the gp register will have a different value at runtime, the
programmer can override the default assumption with the “gp=” parameter. If the
programmer wants to prevent the assembler from producing code which relies on
the value in in gp, then “gp=undefined” can be used on the .begin pseudo-op.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	59 284

Chapter 4: Segments	

The MOVI / gp Exception There is one case where the assembler will not use the
assumed value in gp: Whenever the destination register of a MOVI instruction is the
gp register itself, the assembler will specifically avoid using any assumed value of gp.
This exception makes it possible to initialize the gp register.	

For example, it’s likely that gp will need to be initialized right after any thread begins
execution (in the “thread prologue”) to contain its expected value of 0x8_0000_8000.
To do this, the programmer might consider using the MOVI instruction. Because of
this exception, the MOVI is safe to use for this purpose.	

NOTE: The “gp=” parameter is not required on the .begin instruction. If missing,
then the assembler will determine whether the “kernel” parameter is present. If this
is a kernel segment, the assembler will assume the default value of 0x0_0001_0000.
If this segment is not marked “kernel”, then the assembler will make no
assumptions, since the segment might go into kernel memory or into user memory.
The assembler will defer to the linker, which will choose the correct default value.	

	 gp = value	 Programmer gives the value.	
	 gp = undefined	 The gp register will not be used for synthetic instructions.	
	 kernel, <no gp=>	 A value of 0x0_0001_0000 will be assumed.	
	 <no kernel>, <no gp=>	 Assembler assumes nothing.	
	 	 Linker assumes: 	 kernel (-k):	 0x0_0001_0000	
	 	 	 user:	 0x8_0000_8000	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	60 284

Chapter 5: Synthetic Instructions	

Quick Summary	

• The assembler recognizes a set of synthetic instructions.	
• Synthetic instructions are not implemented in hardware.	
• The assembler translates each synthetic instruction into an equivalent machine
instruction.	
	 	 • In most cases, the translation is to a single machine instruction.	
	 	 • In the other cases, a couple of instructions will be required.	
• The technique of synthetic instructions expands the effective instruction set.	
	 	 • Hardware is simplified since only machine instructions are executed.	
• In most cases, the assembler can perform the translation.	
	 	 • In some cases, the assembler will have to pass the task to the linker.	
• The algorithm used by the assembler is complex.	
	 	 • The sizes of the translations (1, 2, 3, or 4 instructions) affect address values.	
	 	 • The values of addresses affect how many instructions are required.	
	 	 • Imported symbols introduce uncertainty, further complicating translation.	

Introduction	

The technique of using synthetic instructions yields a great enlargement of the
instruction set while allowing the underlying hardware to remain very simple.	

In some sense, no new functionality is added to the Instruction Set Architecture
(ISA). But the presence of the synthetic instructions shows how the underlying
machine instructions were designed in order to allow easy implementation of
common operations.	

The programmer need not use synthetic instructions, but they make programming
much easier and the programs more readable.	

Blitz-64: Assembler and Linker / Porter	 Page of 61 284

Chapter 5: Synthetic Instructions	

By keeping the hardware design as simple as possible, we achieve the following:	

	 • The processor core requires fewer transistors and wires.	
	 • The circuit real-estate is smaller.	
	 • More cores can be placed on a single die, leading to improved parallelism.	
	 • The circuits are easier to design, debug, and verify.	

The synthetic instructions are documented alongside the machine instructions in
the document describing the Instruction Set Architecture (ISA). That document
contains an entry for each synthetic instruction, specifying what it does and how it is
used.	

Simple Translations	

A number of synthetic instructions are easy to translate. Such cases:	

	 • Always translate to exactly one instruction	
	 • Have no error conditions	

Next, we list the easy translations and we will say nothing further about them.	

Arithmetic Negation:	

	 Synthetic:	 neg RegD,Reg1	
	 Translation:	 sub RegD,r0,Reg1	

Bit Negation (NOT):	

	 Synthetic:	 bitnot RegD,Reg1
	 Translation:	 xori RegD,Reg1,-1	

Logical Negation (0=False; other=True):	

	 Synthetic:	 lognot RegD,Reg1
	 Translation:	 testeq RegD,r0,Reg1

Blitz-64: Assembler and Linker / Porter	 	 Page of 	62 284

Chapter 5: Synthetic Instructions	

Move (Register to Register):	

	 Synthetic:	 mov RegD,Reg1
	 Translation:	 ori RegD,Reg1,0	

Nop:	

	 Synthetic:	 nop
	 Translation:	 addi r0,r0,0

Call (Through Register):	

	 Synthetic:	 callr Reg1
	 Translation:	 jalr lr,0(Reg1)

Jump (Through Register):	

	 Synthetic:	 jr Reg1
	 Translation:	 jalr r0,0(Reg1)

Return:	

	 Synthetic:	 ret
	 Translation:	 jalr r0,0(lr)

CSR Write:	

	 Synthetic:	 csrwrite CSRReg,Reg2
	 Translation:	 csrswap r0,CSRReg,Reg2	

Test If Greater Than:	

	 Synthetic:	 testgt RegD,Reg1,Reg2
	 Translation:	 testlt RegD,Reg2,Reg1

Test If Greater Than Or Equal:	

	 Synthetic:	 testge RegD,Reg1,Reg2
	 Translation:	 testle RegD,Reg2,Reg1

Blitz-64: Assembler and Linker / Porter	 	 Page of 	63 284

Chapter 5: Synthetic Instructions	

Test If Greater Than (Floating):	

	 Synthetic:	 fgt RegD,Reg1,Reg2
	 Translation:	 flt RegD,Reg2,Reg1

Test If Greater Than Or Equal (Floating):	

	 Synthetic:	 fge RegD,Reg1,Reg2
	 Translation:	 fle RegD,Reg2,Reg1

Test If Equal To Zero:	

	 Synthetic:	 testeqz RegD,Reg1
	 Translation:	 testeq RegD,Reg1,r0

Test If Not Equal To Zero:	

	 Synthetic:	 testnez RegD,Reg1
	 Translation:	 testne RegD,Reg1,r0

Test If Less Than Zero:	

	 Synthetic:	 testltz RegD,Reg1
	 Translation:	 testlt RegD,Reg1,r0

Test If Lass Than Or Equal To Zero:	

	 Synthetic:	 testlez RegD,Reg1
	 Translation:	 testle RegD,Reg1,r0

Test If Greater Than Zero:	

	 Synthetic:	 testgtz RegD,Reg1
	 Translation:	 testlt RegD,r0,Reg1

Test If Greater Than Or Equal To Zero:	

	 Synthetic:	 testgez RegD,Reg1
	 Translation:	 testle RegD,r0,Reg1

Blitz-64: Assembler and Linker / Porter	 	 Page of 	64 284

Chapter 5: Synthetic Instructions	

Absolute Value	

The translation of the “abs” instruction (which computes the absolute value of the
contents of one register and moves the result into another register) is slightly more
complex, since the translation results in three machine instructions.	

However, since the translation always results in exactly three instructions and no
error conditions can arise, it is fairly straightforward.	

Absolute Value:	

	 Synthetic:	 abs RegD,Reg1

	 Translation:	 mov RegD,Reg1
	 	 bgez Reg1,+8
	 	 neg RegD,Reg1

Note that the translation itself, as expressed above, uses synthetic instructions.
When these are translated, we see the actual translation:	

	 Translation:	 ori RegD,Reg1,r0
	 	 b.le r0,Reg1,+8
	 	 sub RegD,r0,Reg1

Branching Instructions	

Recall that there are only four machine instructions which do a “test and branch”
operation:	

	 b.eq	 Reg1,Reg2,offset16	
	 b.ne	 Reg1,Reg2,offset16	
	 b.lt	 Reg1,Reg2,offset16	
	 b.le	 Reg1,Reg2,offset16	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	65 284

Chapter 5: Synthetic Instructions	

where “offset16” is a 16 bit signed number (i.e., -32,768 … +32,767). The offset will
be added to the address of the branch instruction (i.e., the current PC) to give the
address of the branch target.	

Out of these, the following synthetic instructions are constructed:	

	 beq	 Reg1,Reg2,Address	
	 bne	 Reg1,Reg2,Address	
	 blt	 Reg1,Reg2,Address	
	 ble	 Reg1,Reg2,Address	
	 bgt	 Reg1,Reg2,Address	
	 bge	 Reg1,Reg2,Address	

	 beqz	 Reg1,Address	
	 bnez	 Reg1,Address	
	 bltz	 Reg1,Address	
	 blez	 Reg1,Address	
	 bgtz	 Reg1,Address	
	 bgez	 Reg1,Address	

	 bfalse	 Reg1,Address	
	 btrue	 Reg1,Address	

where “Address” is an arbitrary memory location.	

In the first stage of the translation, the assembler will translate the above
instructions into one of the following four synthetic instructions. The translation of
these four instructions will be discussed in subsequent sections.	

	 beq	 Reg1,Reg2,Address	
	 bne	 Reg1,Reg2,Address	
	 blt	 Reg1,Reg2,Address	
	 ble	 Reg1,Reg2,Address	

Here are those first-stage translations:	

	 Synthetic:	 bgt	 Reg1,Reg2,Address	
	 Translation:	 blt Reg2,Reg1,Address

Blitz-64: Assembler and Linker / Porter	 	 Page of 	66 284

Chapter 5: Synthetic Instructions	

	 Synthetic:	 bge	 Reg1,Reg2,Address	
	 Translation:	 ble Reg2,Reg1,Address

	 Synthetic:	 beqz	 Reg1,Address	
	 Translation:	 beq Reg1,r0,Address

	 Synthetic:	 bnez	 Reg1,Address	
	 Translation:	 bne Reg1,r0,Address

	 Synthetic:	 bltz	 Reg1,Address	
	 Translation:	 blt Reg1,r0,Address

	 Synthetic:	 blez	 Reg1,Address	
	 Translation:	 ble Reg1,r0,Address

	 Synthetic:	 bgtz	 Reg1,Address	
	 Translation:	 blt r0,Reg1,Address

	 Synthetic:	 bgez	 Reg1,Address	
	 Translation:	 ble r0,Reg1,Address

	 Synthetic:	 bfalse	 Reg1,Address	
	 Translation:	 beq Reg1,r0,Address

	 Synthetic:	 btrue	 Reg1,Address	
	 Translation:	 bne Reg1,r0,Address

The Complex Translations	

The remaining synthetic instructions are listed next. We group them into seven
“formats” which we name “Format S-1” through “Format S-7”.	

In the following, “Value” can be any arbitrary 64-bit value, “Address” can be any 36-
bit address, and “Offset” can be any 36-bit offset value.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	67 284

Chapter 5: Synthetic Instructions	

	 Format S-1	
	 	 movi	 Reg,Value	

	 Format S-2	
	 	 beq	 Reg1,Reg2,Address	
	 	 bne	 Reg1,Reg2,Address	
	 	 blt	 Reg1,Reg2,Address	
	 	 ble	 Reg1,Reg2,Address	

	 Format S-3	
	 	 call	 Address	
	 	 jump	 Address	

	 Format S-4	
	 	 loadb	 RegD,Address	
	 	 loadh	 RegD,Address	
	 	 loadw	 RegD,Address	
	 	 loadd	 RegD,Address	

	 Format S-5	
	 	 storeb	 Address,Reg2	
	 	 storeh	 Address,Reg2	
	 	 storew	 Address,Reg2	
	 	 stored	 Address,Reg2	

	 Format S-6	
	 	 loadb	 RegD,Offset(Reg1)	
	 	 loadh	 RegD,Offset(Reg1)	
	 	 loadw	 RegD,Offset(Reg1)	
	 	 loadd	 RegD,Offset(Reg1)	

	 Format S-7	
	 	 storeb	 Offset(Reg1),Reg2	
	 	 storeh	 Offset(Reg1),Reg2	
	 	 storew	 Offset(Reg1),Reg2	
	 	 stored	 Offset(Reg1),Reg2	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	68 284

Chapter 5: Synthetic Instructions	

Addresses are typically specified symbolically. For example:	

	 	 MyLabel:
…
jump MyLabel
…
blt r1,r3,MyLabel	
…
call MyLabel	

In the case of data, addresses are often used like this:	

loadd r1,MyVar
…

	 	 MyVar: .doubleword 1234

Addresses may also be specified as absolute values, as in:	

 loadd r1,MyVar
MyVar: .equ 0x80000000c	

Although unusual, addresses may also be specified using expressions, such as the
following which offsets from relocatable symbolic address:	

 jump ExternLabel+8
…
.import ExternLabel	

Offsets are typically specified with numbers or symbols that are equated to
integers:	

	 	 varX: .equ 12
…
loadd r1,varX(sp)
stored 16(r4),r2

However, the offset can be specified using an expression.	

In the case of a “movi” instruction, the Value being loaded into the register can be
specified in a number of ways:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	69 284

Chapter 5: Synthetic Instructions	

movi r1,0x1234	 An immediate value
movi r1,MyConst	 An equated value	
movi r1,MyVar	 An address of data	
movi r1,MyFun	 An address of code	
movi r1,(MyFun-MyVar)<<8	 Complex expression	
…

MyConst: .equ 0x1234
MyVar: .skip 8
MyFun: add …

In the following sections, you will see that some of the translations make use of the
temporary register “t” (i.e., r8). The programmer should be aware that the
assembler and linker may produce code which silently modifies “t”. Even though “t”
does not appear in the assembly source code directly, any of the following
instructions may result in a translation that involves “t”.	

bXX
jump
call
storeb
storeh
storew
stored

In the terminology used by compiler-writers, these instructions “kill” register “t”.
(Note that the translations for movi and loadX or the other synthetic instructions
will never silently use register “t”.)	

Format S-1: “movi RegD,Value”	

If Value is an absolute integer whose value can be determined by the assembler, then
the translation selected will depend on the magnitude of the value involved.	

If Value is -32,768 … +32,767, then the synthetic instruction will be translated as:	

	 Translation:	 xori RegD,r0,Value

Blitz-64: Assembler and Linker / Porter	 	 Page of 	70 284

Chapter 5: Synthetic Instructions	

Otherwise, if we know the value of gp and Value is within -32,768 … +32,767 of gp:	

	 Translation:	 addi RegD,gp,offset16

where offset16 = gp - Value.	

Otherwise, if Value is representable with a 36 bit number (-34,359,738,368 …
+34,359,738,367):	

	 Translation:	 upper20 RegD,upper20
	 	 xori RegD,RegD,lower16

where upper20 and lower16 are computed appropriately.	

If Value is an address, then it is a 36 bit value within 0x0_0000_0000 …
0xF_FFFF_FFFF. (In decimal, this is 0 … 68,719,476,735). The linker will do
something a little tricky for addresses in the upper half of this range, i.e., any and all
addresses in the user address space. The linker will translate the MOVI using only
two instructions, but since bit 35 is a 1 for addresses in 0x8_0000_0000 …
0xF_FFFF_FFFF, the instructions will place a negative number in the registers. That
is, the linker will implicitly sign-extend the address from 36 bits to 64 bits, which
will make all addresses in the user address space negative. After this sign-extension,
the value will lie within 0xFFFF_FFF8_0000_0000 … 0x0000_0007_FFFF_FFFF (i.e.,
within -34,359,738,368 … +34,359,738,367) which fits the requirements of the
translation shown above.	

Addresses are used in JUMP, CALL, Bxx, LOADx, and STOREx instructions. All of these
instructions will ignore the upper bits, so it doesn’t matter whether the upper bits
are 0s or 1s.	

KPL will represent all pointers with signed values. For code running in user space,
addresses will always be negative values.	

Some care must be taken by the programmer. As long as the programmer keeps
pointers in 64 bit variables, the operations of comparison and incrementing will
work fine. However, the programmer should remember that the pointers will usually
be negative numbers.	

One danger arrises when the programmer attempts to specify addresses by
constants. For example:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	71 284

Chapter 5: Synthetic Instructions	

var myPtr: ptr to int = …
…
if (myPtr == 0x80001234) … Wrong; always false
if (myPtr == 0xFFFFFFF80001234) … Correct

Otherwise, if Value is within 52 bits (-2,251,799,813,685,248 …
+2,251,799,813,685,247):	

	 Translation:	 upper20 RegD,upper20
	 	 shift16 RegD,RegD,shift16
	 	 xori RegD,RegD,lower16

where upper-20, shift-16, and lower-16 are computed appropriately.	

Otherwise, it’s the case that Value requires a full 64 bits:	

	 Translation:	 upper16 RegD,r0,upper16
	 	 shift16 RegD,RegD,shift16a
	 	 shift16 RegD,RegD,shift16b
	 	 xori RegD,RegD,lower16

where upper16, shift16a, shift16b, and lower16 are computed appropriately.	

If Value is a relocatable address, the assembler will not attempt to determine its
value. Since segments are generally relocatable (i.e., not pinned with “startaddr=” in
the .begin instruction), it would usually be impossible for the assembler to
determine the exact address anyway.	

However, it is much more likely that the assembler can determine the relative offset
of Address from the current PC. If that offset is representable with a 20 bit number
(i.e., -524,288 … +524,287), then the synthetic instruction will be translated as:	

	 Translation:	 addpc RegD,offset20

In all other cases, the assembler will not produce a translation and will leave the
task to the linker.	

(If Value is an address but the assembler cannot determine its offset from the movi
instruction, it must leave the task to the linker. If Value is an address and the
assembler can determine the offset from the PC, but the offset exceeds 20 bits, the

Blitz-64: Assembler and Linker / Porter	 	 Page of 	72 284

Chapter 5: Synthetic Instructions	

assembler will leave the task to the linker. The linker will know the exact absolute
value and may be able to find a translation of only one instruction. If Value involves
an imported symbol, then the assembler will be clueless about its value and must
defer to the linker.)	

Note that any address can be loaded into a register with only two instructions, and
many addresses will require only one instruction. In most cases, the assembler will
be able to translate the register load with a single instruction. However, the linker
will be required to handle the cases that involve two instructions. Also note, that
almost all common small-ish constants (i.e., any number within -32,768 … +32,767)
can be loaded into a register with only one instruction.	

Format S-2: “bXX Reg1,Reg2,Address”	

If a conditional branch is jumping to relatively close target location, then the
translation will be a single instruction. Otherwise, two instructions will be used.
Three instructions would be needed almost never, but can be used to cover all
possible target locations.	

[In Blitz-64, the instruction encoding was chosen so that the range for a single
branch instruction is quite large (64 GiBytes). Conditional branches (which
generally target a location within the same function or method) will almost always
be translated with only a single instruction. Nevertheless, aberrant, extremal cases
are also accommodated.]	

If Address is within -32,768 ... +32,767 from the instruction (i.e., if a 16-bit offset
from the PC can be used):	

	 Translation of beq instruction:	
	 	 b.eq Reg1,Reg2,offset16

	 Translation of bne instruction:	
	 	 b.ne Reg1,Reg2,offset16

	 Translation of blt instruction:	
	 	 b.lt Reg1,Reg2,offset16

	 Translation of ble instruction:	
	 	 b.eq Reg1,Reg2,offset16

Blitz-64: Assembler and Linker / Porter	 	 Page of 	73 284

Chapter 5: Synthetic Instructions	

If a single instruction cannot be used, then the translation takes a different
approach. The condition is negated and we jump around one or even two
instructions. The one or two instructions will then make the jump unconditionally.	

Here’s the idea:	

	 	 if x < y then goto Target	

is equivalent to:	

	 	 if y ≤ x then goto L	
	 	 goto Target	
	 L:	

Note that when the condition “x < y” is negated, we get “x ≥ y”. There is no machine
code to test for greater-than-or-equal. However, if we swap the order of the
registers, this test becomes: “y ≤ x”, and Blitz-64 has a machine instruction for this
test.	

In the following, note that we refer to the “offset from the PC”. The instruction
making the jump (JAL and JALR) is the location from which the offset will be
calculated. 	

If Address is within -524,288 ... +524,287 from the jump instruction (a 20-bit offset
from PC must be used):	

	 Translation of beq instruction:	
	 	 b.ne Reg2,Reg1,+8 The test is changed & the regs are swapped
	 	 jal r0,offset20	

	 Translation of bne instruction:	
	 	 b.eq Reg2,Reg1,+8 The test is changed & the regs are swapped	
	 	 jal r0,offset20	

	 Translation of blt instruction:	
	 	 b.le Reg2,Reg1,+8 The test is changed & the regs are swapped
	 	 jal r0,offset20	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	74 284

Chapter 5: Synthetic Instructions	

	 Translation of ble instruction:	
	 	 b.lt Reg2,Reg1,+8 The test is changed & the regs are swapped
	 	 jal r0,offset20	

Otherwise, a 36 bit offset will be used:	

	 Translation of beq instruction:	
b.ne Reg2,Reg1,+12	 The test is changed & the regs are swapped
auipc t,upper20
jalr r0,lower16(t)

	 Translation of bne instruction:	
	 	 b.eq Reg2,Reg1,+12 	The test is changed & the regs are swapped	
	 	 auipc t,upper20	
	 	 jalr r0,lower16(t)

	 Translation of blt instruction:	
	 	 b.le Reg2,Reg1,+12 	 The test is changed & the regs are swapped	
	 	 auipc t,upper20	
	 	 jalr r0,lower16(t)

	 Translation of ble instruction:	
	 	 b.lt Reg2,Reg1,+12 	 The test is changed & the regs are swapped	
	 	 auipc t,upper20	
	 	 jalr r0,lower16(t)

For the synthetic branch instructions (beq, bne, blt, …), the target Address must be a
relocatable address. The assembler does not accommodate absolute values. But
keep in mind that this sort of branch is extremely rare.	

For example, the following would cause an error message:	

	 	 blt r3,r5,0xE47004	 Absolute targets are not legal	

In the unusual event that the programmer really needs to do a branch using a target
location expressed as an absolute integer, the following code can be used. (Unlike
the bXX instructions, the jump instruction will accept absolute integers for the
target address.)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	75 284

Chapter 5: Synthetic Instructions	

	 	 ble r5,r3,NewLabel 	 Note change in condition & reg swap	 	 	
	 	 jump 0xE47004

NewLabel:

The assembler will translate this as follows, achieving the desired effect:	

	 	 b.le r5,r3,+12 	 	 	
	 	 upper20 t,0x000E4	
	 	 jalr r0,0x7004(t)

Format S-3: “jump/call Address”	

The two synthetic instructions in Format S-3 are:	

	 	 jump Address
	 	 call Address

Recall that register r14 is the “link register” (also named “lr”). When calling a
function, the JAL and JALR instructions will save the return address in register lr. A
JUMP is identical to a CALL, except that the return address is not retained, and is
sent to “r0” instead. 	

Jumps and calls to an address specified using an absolute integer target address
(as shown here) are expected to be extremely rare. Nevertheless, the assembler will
translate such a jump or call.	

	 	 jump 0x000e70400
	 	 call 347810	

If Address is an absolute value within 0 … +32,767, the translation will use a positive
16 bit offset from zero (i.e., register r0).	

If the Address is within 0xF_FFFF_8000 … 0xF_FFFF_FFFF, then the translation will
use a negative 16 bit offset from zero. Recall that the hardware always ignores the
uppermost 28 bits of any 64 bit number, so we can address the upper bytes of the
memory space with negative numbers.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	76 284

Chapter 5: Synthetic Instructions	

[You can think of memory as “wrapping around” or, equivalently, taking all
addresses “mod 0x0000_0010_0000_0000”. For example, zero - 0x4000 =
FFFF_FFFF_FFFF_C000; with truncation, we have 0xF_FFFF_C000. Note that address
wrap-around makes the uppermost region of the virtual address space (above the
stack) a reasonable place to put jump tables.]	

	 Translation of jump: 	
 jalr r0,immed16(r0)
	 Translation of call:	
 jalr lr,immed16(r0)

Otherwise, if Address is an absolute value within -32,768 … +32,767 of the value
assumed to be in register “gp”:	

	 Translation of jump: 	
jalr r0,immed16(gp)

	 Translation of call: 	
jalr lr,immed16(gp)

Otherwise, if Address is any other absolute value (i.e., a full 36-bit address is
required):	

	 Translation of jump: 	
 upper20 t,upper20
 jalr r0,lower16(t)
	 Translation of call: 	
 upper20 t,upper20
 jalr lr,lower16(t)

It is much more likely that the address will be given as a symbolic value, as shown
next. In many cases, the assembler will be able to determine the relative distance
between the current PC (i.e., the address of the jump/call) and the target.	

 jump loop_exit
 call MyFunction

(The assembler will never attempt to determine the absolute integer address of a
symbolic label, but it can usually determine the relative offset between two
locations, as long as both locations are within the same segment.)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	77 284

Chapter 5: Synthetic Instructions	

If the assembler can determine the relative offset, and if the target Address is within
-524,288 ... +524,287 from the jump/call instruction, then a 20-bit offset from PC
will be used.	

This is the common case. Most jumps and calls will be to targets that are specified as
symbolic addresses that the assembler can determine are within 512 KiBytes from
the location of the jump/call.	

	 Translation of jump: 	
 jal r0,offset20
	 Translation of call: 	
 jal lr,offset20

If the assembler can determine the relative offset, but if the relative offset exceeds
this value, then a 36 bit offset relative to the PC will be used:	

	 Translation of jump: 	
 auipc t,upper20
 jalr r0,lower16(t)
	 Translation of call: 	
 auipc t,upper20
 jalr lr,lower16(t)

If the assembler cannot determine the target Address or cannot compute a relative
offset between Address and the current PC, the task of translation will be passed on
to the linker.	

Format S-4: “loadX RegD,Address” 	

The memory location in the LOAD and STORE instructions can be specified in two
ways, as shown in these examples:	

	 	 loadd r7,Address	 ← Move data from memory to register
	 	 stored Address,r7	 ← Move data from register to memory

	 	 loadd r7,Offset(r5)	 ← Add immed. value to reg to give address	
	 	 stored Offset(r5),r7	 ← Add immed. value to reg to give address	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	78 284

Chapter 5: Synthetic Instructions	

[Earlier, we said that the opcode exactly and uniquely determines the format of the
operands. This isn’t quite true. The LOAD and STORE instructions are exceptions to
this and they are the only exceptions.]	

All synthetic LOAD operations — regardless of whether the operand has the form
“Address” or “Offset(Reg)” — are translated using the following machine instructions.
(Note that the period “.” in the opcode differentiates between synthetic instructions
and machine instructions.)	

	 	 load.b RegD,offset16(Reg1)
	 	 load.h RegD,offset16(Reg1)
	 	 load.w RegD,offset16(Reg1)
	 	 load.d RegD,offset16(Reg1)

In this section we’ll use the notation loadX where X stands for b, h, w, or d.
Likewise, we’ll use the notation load.X as shorthand for load.b, load.h,
load.w, or load.d.	

Format S-4 includes the four synthetic LOAD instructions that have an address as an
operand.	

	 	 loadb r7,Address 	 ← Fetch a byte
	 	 loadh r7,Address 	 ← Fetch a halfword (16 bits)
	 	 loadw r7,Address 	 ← Fetch a word (32 bits)
	 	 loadd r7,Address 	 ← Fetch a doubleword (64 bits)

The LOAD instructions in which the memory address has the form “Offset(Reg)” are
discussed later, under Format S-6.	

The Address can be given in several ways:	

	 	 loadb r7,MyVar 	 ← Symbolic, relocatable location
	 	 loadb r7,MyVar+100 	 ← Symbolic plus/minus integer
	 	 loadb r7,0x00E70040 	 ← Absolute Address

If the assembler can compute difference between the LOAD and the target location,
then it will produce code using PC-relative addressing. If a symbolic label is used but
the assembler is unable to determine the relative offset, then the task will be passed
on to the linker. (This happens whenever the symbol is externally defined, or

Blitz-64: Assembler and Linker / Porter	 	 Page of 	79 284

Chapter 5: Synthetic Instructions	

whenever the source and target are in different segments, or whenever there is
something of unknown size between the source and target locations.)	

Otherwise, (i.e., if Address is specified as an absolute integer value known to the
assembler), the translation will use the translations shown next.	

If Address is an absolute value within 0 … +32,767, the translation will use a positive
16 bit offset from zero (i.e., register r0).	

If the Address is within 0xF_FFFF_8000 … 0xF_FFFF_FFFF, then the translation will
use a negative 16 bit offset from register r0. [Memory “wraparound” and the use of
negative offsets was discussed in the section “Format S-3: jump/call”.]	

	 Translation:	 load.X RegD,immed16(r0)

If Address is an absolute number within -32,768 ... +32,767 of the value assumed to
be in register “gp”:	

	 Translation:	 load.X RegD,immed16(gp)

If Address is an absolute number of any other value:	

	 Translation:	 upper20 RegD,upper20
	 	 load.X RegD,lower16(RegD)

If Address has a PC-relative value that the assembler can determine:	

	 Translation:	 auipc RegD,upper20
	 	 load.X RegD,lower16(RegD)

Note: In some cases, the assembler will be able to determine a relative offset from
the PC but unable to determine the absolute location. In such cases, the assembler
will produce the two instruction sequence just shown. If it happens that the target
location is also within ±32 KiBytes of zero (r0) or register gp, then a single
instruction would have sufficed, although two instructions were generated.	

This situation is rare and not considered likely to occur in practice because the
typical programming practice is to put variables and data in one segment (marked
“writable”) and code in another segment (marked “executable”). The data segment

Blitz-64: Assembler and Linker / Porter	 	 Page of 	80 284

Chapter 5: Synthetic Instructions	

will typically be placed where it can be conveniently accessed with the default value
assumed to be in register gp (0x8_0000_8000):	

.begin writable,startaddr=0x800000000
Var_1: .doubleword 1234
Var_2: .byte 0x34

	 	

User code cannot access low memory so positive offsets from register r0 are only
usable by the kernel. Kernel code will place its data in a segment located at the
beginning of memory:	

.begin kernel,writable,startaddr=0x0
Var_1: .doubleword 1234
Var_2: .byte 0x34

Since the source LOAD instruction and the target data address are in different
segments, the assembler will be unable to generate a PC-relative address. The
assembler will be forced to pass the task off to the linker. The linker will determine
exact addresses and will generate a one-instruction sequence whenever possible.	

This comment also applies to the STORE instructions.	

Format S-5: “loadX RegD,Offset(Reg1)”	

A second form of the LOAD and STORE instructions allows the address to be
computed by adding a fixed constant value to the contents of a register. This form is
particularly useful for accessing variables stored in a stack frame, which is
commonly done for variables local to a function or method.	

	 loadd	 RegD,local_x(sp)
	 stored	 8(sp),RegD

Another important use of the “Offset(Reg)” addressing form is to access the fields in
an object. Each field (i.e., “data member”) is located at a known offset within the
object and the object itself is pointed to by a register.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	81 284

Chapter 5: Synthetic Instructions	

Next, we describe the translation of:	

	 loadb	 RegD,Offset(Reg1)
	 loadh	 RegD,Offset(Reg1)
	 loadw	 RegD,Offset(Reg1)
	 loadd	 RegD,Offset(Reg1)

If Offset is an absolute integer value within -32,768 … +32,767, i.e., if it can be
represented with a signed 16 bit immediate value:	

	 Translation:	 load.X	 RegD,immed16(Reg1)

If Offset is an absolute integer value within -2,147,483,648 … +-2,147,483,647, i.e., if
it can be represented with a signed 32 bit value:	

	 Translation:	 upper16	 RegD,Reg1,upper16	
	 	 load.X	 RegD,lower16(RegD)	

Otherwise, Offset requires a full 36 bits:	

	 Translation:	 upper20	 RegD,upper20	
	 	 add	 RegD,RegD,Reg1 	 	
	 	 load.X	 RegD,lower16(RegD)

The assembler is unable to handle that case where Offset is given by a relocatable
label, as shown below. Such cases will be passed off to the linker.	

MyArr: .skip 100000
 …

loadd r7,MyArr(r3)

It is often the case where the programmer has an address in a register and wishes to
use that address directly, without any offset. To do this, the programmer can code it
as illustrated by the following example.	

loadd r7,0(r3)

which will be assembled identically to the following machine instruction:	

load.d r7,0(r3)

Blitz-64: Assembler and Linker / Porter	 	 Page of 	82 284

Chapter 5: Synthetic Instructions	

We considered adding additional synthetic forms to accommodate shorthand such
as shown in the following examples. But we decided against it because it violates the
fundamental Blitz-64 design goal of avoiding complexity.	

loadd r7,(r3) ← Syntax error
stored (r3),r7 ← Syntax error

Additional Detail We have called the expression “Offset” and implicitly assumed
that the register contains a “base” address. The effective address will be
“base+offset”. This is typical of addressing fields in an object, where the register
contains a pointer to the object and the literal, immediate value is the offset of some
field in that object.	

However, the literal, immediate expression might supply the base address and the
register might contain an offset. This is common for accessing arrays that are located
at statically determine addresses. The address of the array is coded directly into the
instruction.	

In this comment, we discuss the range of legal values for the literal, immediate value
“Expression”.	

In general, the Expression may be any address (i.e., any value within 0x ...
0xF_FFFF_FFFF) in which case the value to be used will be adjusted to a signed 36-
bit value (i.e., within 0x8_0000_0000 ... 0x7_FFFF_FFFF). This is equivalent; the
lower-order 36 bits are identical, and there are no more bits than that in the address
calculations performed in hardware.	

The Expression may also be an offset, in which case it is reasonable to allow a
negative value down to -0xF_FFFF_FFFF (i.e., 0xFFFF_FFF0_0000_0001). For
example, consider the case where the programmer has placed a very high address
(such as 0xF_FFFF_1234) in register r1.	

An offset of -0xF_FFFF_1231 can be used to address location 0x0_0000_0003.
Working through this example, -0xF_FFFF_1231 is a negative number and is
represented as 0xFFFF_FFF0_0000_EDCF. This offset will be truncated to 36 bits and
sign-extended, giving 0x0_0000_EDCF. This is the value that will go into the machine
instructions. At runtime, adding 0x0_0000_EDCF to 0xF_FFFF_1234 gives
0x10_0000_0003, which will get truncated by the hardware to 0x0_0000_0003,
exactly the address that is desired.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	83 284

Chapter 5: Synthetic Instructions	

Thus, the linker will accept any value for Expression within -0xF_FFFF_FFFF ..
0xF_FFFF_FFFF (i.e., -68,719,476,735 … + 68,719,476,735) without complaint or
warning. Any value for Expression outside this range will result in an error message.	

This scheme allows location 0 to be reached from the highest address
(0xF_FFFF_FFFF) and it allows the highest address (0xF_FFFF_FFFF) to be reached
from address 0. Since LOAD and STORE instructions are designed for memory
access, any Offset value beyond 36 bits must be in error.	

For example, consider reaching address 0 from address 0xF_FFFF_FFFF. This
requires an offset of -0xF_FFFF_FFFF. Expresses as 36 bits, this value is
0xFFFF_FFF0_0000_0001 = 0x0_0000_0001. Adding, we get 0x0_0000_0000, as
desired.	

However, note that the assembler will only accept values for Expression within a
more limited range of 0xFFFF_FFF8_0000_0000 … 0x0000_0007_FFFF_FFFF (i.e.,
-34,359,738,368 .. +34,359,738,367 which is -0x8_0000_0000 … +0x7_FFFF_FFFF).
If the assembler can determine the value and this value is outside this range, the
assembler will generate an error and fail. In the next paragraph, we explain why this
should never be a problem.	

If the programmer uses a memory address for Expression, the assembler will always
defer instruction synthesis to the linker. So, in the only case where the assembler
might potentially generate an error, we can assume that the “base” address must be
placed in the register, and Expression is an “offset”. In other words, the given
Expression must be an offset from an address, not an address itself. For user mode
programs we can assume the address in the register must be an address in the user
address space. The range limit for the offset expression will still allow any address in
user space to be reached from whatever address was in the register. Likewise, for
kernel mode programs, we assume that any address calculation will be from an
address in the kernel space to another address in the kernel space. Thus, the range
limit imposed by the assembler should never be a problem, regardless of what
address will be in the register and what offset was supplied. However, in the event
that an Expression outside the assembler’s limit is desired and the assembler is
balking, there is a simple work-around. The large value can be placed in a separate .s
file, assembled independently, and exported to the source file needing it. Since the
assembler will not have access to the value of the Expression, it defer synthesis to the
linker, which accommodates the full range of offsets.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	84 284

Chapter 5: Synthetic Instructions	

Of course, any value beyond the linker’s range make no sense. The value will be
added to the contents of the register and will be used as an address for a LOAD or
STORE instruction. Since the hardware addition is limited to 36 bits, the upper bits
are pointless.	

Format S-6: “storeX Address,Reg2”	

The memory location in the STORE instructions can be specified in two ways, as
shown by these examples:	

	 	 stored Address,r7	 ← Move data from register to memory
	 	 stored Offset(r5),r7	 ← Add immed. value to reg to give address	

This section discusses instructions using the first form.	

All synthetic STORE operations — regardless of whether the operand has the form
“Address” or “Offset(Reg)” — are translated using the following machine
instructions:	

	 	 store.b offset16(Reg1),Reg2
	 	 store.h offset16(Reg1),Reg2
	 	 store.w offset16(Reg1),Reg2
	 	 store.d offset16(Reg1),Reg2

In this section we use the notation storeX where X stands for b, h, w, or d.
Likewise, we’ll use the notation store.X as shorthand for store.b, store.h,
store.w, or store.d.	

Format S-6 includes the four synthetic STORE instructions that have an address as
an operand.	

	 	 storeb Address,Reg	 ← Store a byte
	 	 storeh Address,Reg	 ← Store a halfword (16 bits)
	 	 storew Address,Reg	 ← Store a word (32 bits)
	 	 stored Address,Reg	 ← Store a doubleword (64 bits)

Blitz-64: Assembler and Linker / Porter	 	 Page of 	85 284

Chapter 5: Synthetic Instructions	

The STORE instructions in which the memory address has the form “Offset(Reg)” are
discussed later, under Format S-7.	

The Address can be given as an absolute integer value or as a relocatable symbol.	

If Address is an absolute value within 0 … +32,767, the translation will use a positive
16 bit offset from zero (i.e., register r0). If the Address is within 0xF_FFFF_8000 …
0xF_FFFF_FFFF, then the translation will use a negative 16 bit offset from register r0.	

	 Translation:	 store.X immed16(r0),Reg2

If Address is an absolute number within -32,768 ... +32,767 of the value assumed to
be in register “gp”:	

	 Translation:	 store.X immed16(gp),Reg2

If Address is an absolute number of any other value:	

	 Translation:	 upper20 t,upper20
	 	 store.X lower16(t),Reg2

If Address has a PC-relative value that the assembler can determine:	

	 Translation:	 auipc t,upper20
	 	 store.X lower16(t),Reg2	

Note: The temporary register “t” is used in some of the translations for STORE,
although “t” is never used for LOAD instructions.	

When translating LOAD, the assembler can use the target register for any address
calculation, since it will obviously be available for use as a work register directly
before the load.X instruction. However, there is no such free register for use in the
translation of STORE instructions. Instead, register “t” will be used.	

The programmer should not forget that a synthetic STORE instruction may result in
code that overwrites the register “t”.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	86 284

Chapter 5: Synthetic Instructions	

Format S-7: “storeX Offset(Reg1),Reg2”	

Next, we describe the translation of instructions in which the target memory
address is computed by adding a fixed constant value to the contents of a register.	

	 storeb	 Offset(Reg1),Reg2
	 storeh	 Offset(Reg1),Reg2
	 storew	 Offset(Reg1),Reg2
	 stored	 Offset(Reg1),Reg2

If Offset is an absolute integer value within -32,768 … +32,767, i.e., if it can be
represented with a signed 16 bit immediate value:	

	 Translation:	 store.X	 immed16(Reg1),Reg2

If Offset is an absolute integer value within -2,147,483,648 … +-2,147,483,647, i.e., if
it can be represented with a signed 32 bit value:	

	 Translation:	 upper16	 t,Reg1,upper16	
	 	 store.X	 lower16(t),Reg2	

Otherwise, Offset requires a full 36 bits:	

	 Translation:	 upper20	 t,upper20	
	 	 add	 t,t,Reg1 	 	
	 	 store.X	 lower16(t),Reg2

The assembler is unable to handle that case where Offset is given by a relocatable
label, as shown below. Such cases will be passed off to the linker.	

MyArr: .skip 100000
 …

stored MyArr(r3),r7

It is often the case where the programmer has an address in a register and wishes to
use that address directly, without any offset. To do this, the programmer can code it
as illustrated by the following example.	

stored 0(r3),r7  

Blitz-64: Assembler and Linker / Porter	 	 Page of 	87 284

Chapter 6: The Linker	

Quick Summary	

•	The linker tool is called “link” and is run after the assembler.	
•	The linker takes a “.o” object file as input and produces an executable file.	
	 —	 The linker can combine several object files into one executable.	
•	The linker can also take library files as input.	
	 —	 The linker will pull out any object module that is referenced.	
•	The linker determines memory locations for each segment.	
• The linker matches all imported and exported symbols.	
	 —	 An error is reported if an imported symbol is not exported exactly once.	
	 —	 This is the “undefined symbol” error.	
•	The linker determines the exact values for all symbols.	
• The linker translates all remaining synthetic instructions into machine code.	
• The linker inserts bytes as necessary for .align pseudo-ops.	
• The linker algorithm is complex and is described in an appendix.	

Using the Linker	

The Blitz-64 linker tool is named “link”. In the simplest use, it converts a single
object file into an executable file:	

link hello.o -o hello

The linker can combine several object files into a single executable:	

link file1.o file2.o file3.o -o myPgm

Blitz-64: Assembler and Linker / Porter	 Page of 88 284

Chapter 6: The Linker	

The executable filename must always be given. It doesn’t default to “a.out”, but you
can always say:	

link file1.o file2.o file3.o -o a.out

The linker can also be suppled with library files as input. There can be zero or more
library files as input:	

link hello.o MyLib1.lib MyLib2.lib MyLib3.lib -o hello

Typically, the object files have a filename extension of “.o” and the library files have
an extension of “.lib”, however this is not enforced by the linker. The linker ignores
the extension and determines whether the input file is an object file or a library by
looking at the contents of the file. Object files and library files begin with “magic
numbers” and these are used to determine what type of file is actually present.	

Concerning the names of library files, the filename is given directly, just as for other
command lines. (In Unix/Linux, something like “-lm” can indicates a file with name
“libm.a” and/or “libm.so”. Furthermore, this can result in a search of the directory
hierarchy. This complex behavior is absent in Blitz-64.)	

Error Messages	

The linker will sometimes print errors and/or warnings.	

In all cases, an error will cause the EXIT_FAILURE code to be returned from the
linker command to the shell that invoked it. No executable file will be produced. If
only warnings are generated, an executable file will be produced.	

The error and warning messages are printed on stderr. For some messages,
additional information will be printed on stdout.	

Here are the most important error messages, all of which arise from programming
mistakes:	

***** LINK ERROR: Undefined Symbol: xxx was imported on line xxx in
module "xxx" (file "xxx"/"xxx"). No matching export can be found.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	89 284

Chapter 6: The Linker	

***** LINK ERROR: Symbol "xxx" is equated to "xxx" which is imported.
However, no matching export can be found. (line xxx from file
"xxx"/"xxx") *****

***** LINK ERROR: The symbol "xxx" was used on line xxx of module
"xxx" (file "xxx"/"xxx"). This symbol was imported but no matching
export was found. *****

***** LINK ERROR: This program contains no bytes. *****

***** LINK ERROR: Every program must have an exported symbol "_entry"

***** LINK ERROR: Symbol "_entry" is not a valid address within this
program *****

***** LINK ERROR: The EQU symbols xxx (from module "xxx") and xxx
(from module "xxx") are cyclicly defined *****

***** LINK ERROR: When synthesizing this LOADx instruction, an offset
value that was not in -0xF,FFFF,FFFF ... +0xF,FFFF,FFFF was
encountered. *****

***** LINK ERROR: When synthesizing this STOREx instruction, an
offset value that was not in -0xF,FFFF,FFFF ... +0xF,FFFF,FFFF was
encountered. ****

***** LINK ERROR: Symbol xxx is exported multiple times (from module
"xxx" in library "xxx" and module “xxx" in library "xxx") *****

***** LINK ERROR: Symbol xxx is exported multiple times (from module
"xxx" from file "xxx" and module "xxx" from file "xxx") *****

***** LINK ERROR: These segments have different (executable,
writable) attributes but try to occupy the same page. *****
(Segments are also printed)

***** LINK ERROR: In computing the value of the EQU symbol
"xxx" (from module "xxx"), overflow has occurred *****

Blitz-64: Assembler and Linker / Porter	 	 Page of 	90 284

Chapter 6: The Linker	

Additional Errors	

There are a large number of additional error conditions which are less common.
Each of these conditions will cause an immediate termination of the linker after
printing the error message.	

These errors fall into these classes:	

•	 Invalid Command Line Note that the command line option -h is always valid
and will do nothing but produce some help info about what command line
options are expected.	

•	 Problems with the Format of an Input File The linker performs a number of
tests and checks on the format of object and library files. If something seems
wrong with an input file, the linker will terminate immediately. Such a message
is likely to be the result of a bug in the assembler or createlib tools.	

•	 Memory Allocation Failure There is not enough memory for the linker to
allocate its internal data structures.	

•	 I/O Error A problem was reported by the host OS during a system call to read
input files or write output files.	

•	 Failure of the Linker to Find a Placement for the Segments The algorithm
used by the linker is reasonably clever but may, for some extreme cases, fail to
find a solution. That is, when placing the segments in memory, the linker was
unable to find legal locations for all the segments. Since each program has a
0x8_0000_0000 byte (i.e., 32 GiByte) address space, any program causing such
a failure would have to be extraordinarily large.	

•	 Program Logic Error The linker performs a large number of internal
consistency checks. If any test fails, the linker will print a message and halt.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	91 284

Chapter 6: The Linker	

Warning Messages	

The following messages are not fatal but probably indicate programmer errors:	

***** LINK WARNING: When synthesizing this Bxx instruction, an
illegal target address was encountered. (Use -w1 to suppress this
warning.) *****

***** LINK WARNING: When synthesizing this JUMP/CALL instruction, an
illegal target address was encountered. (Use -w1 to suppress this
warning.) *****

***** LINK WARNING: When synthesizing this LOADx instruction, a
target address that was not in 0x0 ... 0xF_FFFF_FFFF was
encountered. (Use -w1 to suppress this warning.) *****

***** LINK WARNING: When synthesizing this STOREx instruction, a
target address that was not in 0x0 ... 0xF_FFFF_FFFF was
encountered. (Use -w1 to suppress this warning.) *****

***** LINK WARNING: For reasons that are too complicated to explain,
a NOP was inserted following the translation for this synthetic
instruction. This shouldn't hurt anything, but in the interest of
full disclosure, it may slightly degrade performance. (Command
option -w2 will suppress this warning.) *****

Blitz-64: Assembler and Linker / Porter	 	 Page of 	92 284

Chapter 7: Support for
Runtime Debugging	

Quick Summary	

•	There are a number of assembler pseudo-op instructions for debugging support.	
• The debugging pseudo-ops allow the compiler to provide information to the
debugger.	
•	The compiler will add debugging pseudo-ops to the .s file.	
	 	 — Human assembly programmers will not typically use these pseudo-ops.	
• The debugging pseudo-ops are not necessary for execution and only play a role
when the debugger is activated.	
• The debugging pseudo-ops direct the assembler to add debugging information to
the .o file.	
• The linker will process the debugging information and add it to the executable file.	
• The debugging information will be placed at the end of the executable file.	
• The debugging information will be ignored when the program is loaded for
execution.	
• If a debugging tool is used, it will read the debugging info from the executable file.	
• The debugging information describes:	
	 	 — Function and method names	
	 	 — Local variable names, types, and locations	
	 	 — Global variable names, types, and locations	
	 	 — Source level statement types and locations	
• The debugger will use it to display information in a way that is more human-
readable.	
• The debugging information includes source file name and line numbers which can
be displayed to assist the programmer during debugging.	

Blitz-64: Assembler and Linker / Porter	 Page of 93 284

Chapter 7: Support for Runtime Debugging	

Debugging Pseudo-ops	

The following pseudo-op are used to convey debugging information to the debugger.	

.sourcefile

.function

.endfunction

.regparm

.local

.global

.stmt

.comment

These pseudo-ops are normally produced by the compiler and inserted into the .s
assembly code file it produces.	

These pseudo-ops will not in any way influence how the program executes and
which error and exception conditions can occur.	

Normally, human assembly language programmers will not bother to use any
debugging pseudo-ops. Presumably, an assembly programmer thinks more in terms
of labels and and machine instructions, so these pseudo-ops are not always
meaningful for programs.	

However, nothing prevents the human assembly language programmer from using
the debugging pseudo-ops. The assembler and linker tools will perform error
checking designed to catch egregious errors that might cause problems with the
assembler, linker, and debugger tools. However, nothing prevents the human
programmer from making minor mistakes that cause the debugger general
confusion and to print out gibberish in its attempt to display debugging information
in human-friendly terms.	

A label is not allowed on any of the debugging pseudo-ops. Most of them require
additional operands, which will be discussed later.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	94 284

Chapter 7: Support for Runtime Debugging	

The .sourcefile Pseudo-op	

The .sourcefile pseudo-op is used to associate a source file name with all the code in
the .s file. It requires two operands, both of which must be strings. The strings will
be passed on to the debugger and will be associated with all other debugging
information in the file.	

.sourcefile "Filename","OtherInfo"

Here is an example usage.	

.sourcefile "MyPackage.c","KPL v1.0; Compiled 25-12-2019 19:30"

The .sourcefile pseudo-op must be placed near the top of the .s file, before any
other debugging pseudo-ops. If the file contains any debugging pseudo-ops, then it
must contain a .sourcefile pseudo-op. The .s file must not contain multiple
occurrences of this pseudo-op.	

The Filename string is passed through to the debugger, but is not otherwise
examined by the assembler or linker. This string is required but may be empty. The
debugger will display the Filename to the programmer, since a line number alone is
insufficiently meaningful. The Filename should be the file within which the line
numbers have meaning.	
 	
The OtherInfo string is intended to contain any additional documentation
information, such as the nature of the tool that produced the .s file and perhaps the
date and time at which the file was created. This information is passed through to
the debugger, but is not otherwise examined by the assembler or linker. This string
is required but may be empty.	

	

The .function Pseudo-op	

The .function pseudo-op is used to associate a source name with a function or
method. (For code bodies, the debugging information makes no distinction between
functions and methods.)	

.function "SourceName", line=NNN, framesize=NNN

.endfunction

Blitz-64: Assembler and Linker / Porter	 	 Page of 	95 284

Chapter 7: Support for Runtime Debugging	

Here is an example usage:	

P_Foo_34:
.function "foo", line=57, framesize=32
store.d -8(sp),lr
addi sp,sp,-32
…
addi sp,sp,32
load.d lr,-8(sp)
ret
.endfunction

The .function and .endfunction instructions act as pair to indicate which
instructions originated from a single source code function or method. The .function
should be placed directly before the first instruction of the entry prologue and
the .endfunction should be placed directly after the last instruction of the function.	

A function may contain several RETURN statements and the compiler may elect to
include several copies of the exit epilogue in the code. Regardless of how many the
compiler includes, there must be exactly one .endfunction and it must be placed
after the last instruction that belongs to the function.	

The .function pseudo-op requires a SourceName string, which is the name of the
function or method, as it appeared in the original source file. Due to name mangling,
the label in the assembly file may not match the original name chosen by the human.	

The .function pseudo-op requires the number of the line number on which this
function was defined. A zero value is legal and indicates missing information.	

The .function pseudo-op requires the size of the stack frame (i.e., the activation
record) and this is given in bytes. Since frames are always a multiple of 8 bytes in
size, this number must be, too. It may be zero, but may not be negative. A leaf frame
will always have a frame size of zero; a non-leaf frame will have a frame size of at
least 8.	

For leaf functions, the debugger will assume that the return value of the current
function is in register lr. For non-leaf functions, the debugger will assume that the
return value of the current function is at offset -8(fp). Here, we use fp (frame
pointer) to mean the address of the caller’s frame. The debugger will compute fp as
sp - framesize.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	96 284

Chapter 7: Support for Runtime Debugging	

In the example above, note that the frame size in .function (i.e., 32) is the same
number used in the entry prologue and exit epilogue. This should always be true, or
else the debugger may become confused when looking at the stack.	

The .function and .endfunction instructions form a bracket.
Any .stmt, .comment, .local or .regparm that occurs between them will be
associated with that function. Every .stmt, .comment, .local, and .regparm must
occur between a .function and an .endfunction pseudo-op.	

The byte range given by the .function and .endfunction instructions are all
associated with that function.	

During debugging, if execution is halted, the debugger can look at the current value
of the PC to determine whether execution was halted within a known function.	

There is no requirement that SourceNames for functions be unique; due to
renaming in different packages, the same name may be used for different things. An
empty string is legal and indicates missing information.	

The .global Pseudo-op	

Consider a KPL variable definition that occurs outside any function or method code.
Thus, the variable is a “global” variable:	

var myVar: int = 123

The purpose of the .global pseudo-op is to associate debugging information with the
memory locations that will store this variable’s runtime value.	

The general form is:	

.global "SourceName",line=LineNumber,type="TypeCode"

For example:	

P_MyPack_MyVar_19:
.global "myVar",line=24,type="I"
.doubleword 123

Blitz-64: Assembler and Linker / Porter	 	 Page of 	97 284

Chapter 7: Support for Runtime Debugging	

The .global should be placed immediately before the variable as shown above, so as
to associate the SourceName with the correct memory address.	

As before, the SourceName, and the LineNumber associate attributes with a
memory location. There is no requirement that SourceNames for global variables be
unique; due to renaming in different packages, the same name may be used for
different things.	

The TypeCode is a string which gives the debugger information about the KPL type
of the variable. From this, the debugger will determine how many bytes the variable
occupies as well as how best to display the variable’s value.	

The following type codes are used:	

Easy Types:	
	 I	 int	 64-bit signed integer	
	 W	 word	 32 bit signed integer	
	 H	 halfword	 16 bit signed integer	
	 C	 byte (C = Char)	 8 bit signed integer or ASCII char	
	 L	 bool (L = Logical)	 TRUE / FALSE, 8 bits	
	 D	 double	 64 bit double-precision floating point	
	 S	 String	 Ptr to array of bytes	

Hard Types:	
	 P	 ptr	 Pointer to anything, 64 bits	
	 A	 array	 	
	 O	 object	 	
	 R	 struct (R = Record)	 Size and types of fields is unspecified	
	 U	 union	 Size and types of fields is unspecified	

A String is a pointer to an array of bytes. These are commonly used in KPL to to
represent UTF-8 encoded Unicode strings. Strings are common enough to warrant
their own type code. A String object can be printed by the debugger, although the
debugger should make no assumptions about whether the bytes are UTF-8 codes.	

Each object carries a dispatch pointer at runtime and this pointer points to a jump
table which also contains a pointer to a Class Descriptor. The debugger may be able
to extract some information from these data structures in the target program’s
address space so that it can print out some info about the object.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	98 284

Chapter 7: Support for Runtime Debugging	

For pointers, arrays, structs, and unions, the debugger is provided with no further
information. Thus, it can’t display the value of such variables, other than as a
sequence of bytes.	

Possible Extensions That Were Considered The one-letter type system described
above is obviously limited and could be extended, as described here.	

For all “easy" types, the type code string will consist of a single character.	

For “hard” types, the idea is that the initial character may be followed by additional
characters. That is, we will allow the type code string to contain additional
characters beyond the first character.	

These additional characters encode additional type information for some types. For
example, the type	

	 ptr to XXX	

can be encoded with the string	

	 "PX"	

where X is the type code string for type XXX. For example:	

type	 encoding	
ptr to int	 "PI"	
ptr to ptr to word	 "PPW"

This also works for arrays. For example:	

type	 encoding	
array of int	 "AI"	
ptr to array of ptr to array of bool	 "PAPAL"	

If the additional characters are present, the debugger can use them for a more
human-readable display of values. In the additional characters are missing, the
debugger will be less adept at printing values for these types.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	99 284

Chapter 7: Support for Runtime Debugging	

At this time, there is no proposal for additional characters following these codes.	

	 O	 object	 	
	 R	 struct (R = Record)	 	
	 U	 union	 	

Even the extension proposed is not able to fully accommodate the KPL type system.
Consider this KPL code:	

	 type MyType = ptr to MyType	
	 var x: MyType	

The type code for x would be “PPPPP…”. While this example is contrived, it shows the
existence of a deeper problem.	

We could propose an encoding that addresses the problem of an object/struct/
union that contains a pointer to same type, but it will be complicated.	

However, a complex type system is just not needed and will violate our fundamental
goal of keeping Blitz simple.	

The .local and .regparm Pseudo-ops	

Consider a KPL variable that is local to some function or method code. This could be
a parameter or a local variable:	

function foo (myParm1: bool, myParm2: MyClass)
 var myLocal: int = 123
 …
endFunction

The purpose of the .regparm pseudo-op is to associate debugging information with
a register that will be used to pass a parameter.	

The purpose of the .local pseudo-op is to associate debugging information with
stack locations that will store the values or parameters and local variables.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	100 284

Chapter 7: Support for Runtime Debugging	

The general forms are:	

.regparm RegNum,"SourceName",line=LineNumber,type="TypeCode"

.local Offset, "SourceName",line=LineNumber,type="TypeCode"

For example:	

P_Foo_34:
.function "foo", line=57, framesize=32
.regparm 1, "myParm1", line=57, type="L"
.local 32, "myParm2", line=57, type="O"
.local 8, "myLocal", line=58, type="I"
store.d -8(sp),lr
addi sp,sp,-32

Typically, the .regparm and .local instructions will be placed immediately after
the .function as shown above.	

The RegNum is a number (1 .. 7) which tells which register the parameter is passed
in: r1 … r7.	

The Offset tells where in the stack a parameter or local can be found. Note that the
offsets are relative to the stack top pointer after the function or method prologue. In
a leaf function, the sp register will not be changed, so this doesn’t make any
difference. However, for non-leaf functions it matters. In this example, the frame size
is 32 bytes and the function prologue adjusts register sp by this amount.	

Parameter myParm2 is located at the very top of the stack at the time of the CALL
instruction, so it has offset 0 upon entry. However, after the prologue, the offset of
myParm2 is +32.	

The SourceName, LineNumber, and TypeCode work as described earlier.	

The .local pseudo-op may also be included by the compiler for any temporary
variables the compiler creates which have no human-created SourceName. A empty
SourceName is legal but is discouraged. A simple name of “_temp” is acceptable, but
names like “_temp_23” are better.	

There is no requirement that SourceNames be unique, even within a single function.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	101 284

Chapter 7: Support for Runtime Debugging	

WARNING: The compiler is free to move globals, locals, and parameters into
registers. The compiler will take great effort to keep them in registers as much as
possible.	

As such, the values stored in memory will often be out of date and memory may
contain obsolete values.	

The programmer should never forget this when using the debugger.	

At the entry to a function or method, the parameters will always be where they are
expected to be. Thus, the .local and .regparm info will be correct and an attempt to
see their values at the beginning of a function or method will display their correct
values. However, once the function or method gets underway, the current values may
be placed in registers in ways that are likely to confuse a human. Since the debugger
doesn’t know about how the compiler has choosen to use the registers, the debugger
may printout incorrect or out-of-date values.	

Likewise, the compiler may keep a global variable in a register, instead of writing it
out to memory immediately. [In the case of “shared” variables, the compiler is
forced to write out the values as soon as possible whenever they change and to read
from memory whenever the value is needed.]	

But for most global variables, the compiler will defer writing the values to memory
and may use register copies to avoid memory reads.	

The result is that, by examining variables with the debugger, it is easily possible that
the programmer will see obsolete values. The natural response is to ask why the
variable is incorrect and to focus mental effort debugging something which is, in
fact, not an error at all.	

Even when the value in memory and the value in a register happen to be the same,
the compiler may make all accesses and updates to the register copy, not to memory.
Thus, if the programmer uses the debugger to make a change to a variable’s value as
stored in memory (where the debugger thinks it is), the actual code may ignore this
value and continue to use the value cached in a register.	

So again, the programmer should be very aware that examining or reading a
variable’s value (other than a “shared” global or a parameter at the very beginning of
a function or method entry) is fraught with danger. 	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	102 284

Chapter 7: Support for Runtime Debugging	

	

The .stmt Pseudo-op	

Consider a KPL assignment:	

x = y + 123

The purpose of the .stmt pseudo-op is to associate debugging information with the
range of instructions that implements a single source level statement.	

The general form is:	

.stmt StatementType, line=LineNumber

There are a number of Statement Types.	

Each .stmt pseudo-op must be placed directly before the sequence of instructions to
which it applies. The range of instructions continues until the next .stmt
or .endfunction pseudo-op. The .stmt pseudo-op may only occur between
a .function and an .endfunction pseudo-op.	

.function …
…
.stmt assign,line=63
loadd r1,16(sp)
addi r1,r1,123
stored 32(sp),r1

.stmt if,line=64
…
.endfunction

Blitz-64: Assembler and Linker / Porter	 	 Page of 	103 284

Chapter 7: Support for Runtime Debugging	

Here is the list of statement types.	

0 < .comment > COMMENT
1 assign ASSIGNMENT statement
2 if IF statement
3 then THEN statement
4 else ELSE statement
5 call FUNCTION CALL	
6 send SEND statement
7 while_expr WHILE LOOP (expr evaluation)	
8 while_body WHILE LOOP (body statements)	
9 do_body DO UNTIL (body statements)	
10 do_expr DO UNTIL (expr evaluation)	
11 break BREAK statement	
12 continue CONTINUE statement	
13 return RETURN statement	
14 for_init FOR statement (before initialization)
15 for_body FOR (body statements)	

	 16 for_incr	 FOR (before increment)
17 for_expr	 FOR (before test)
18 switch SWITCH statement

	 19 case	 CASE
20 default	 DEFAULT
21 try TRY statement
22 throw THROW statement
23 catch CATCH clause
24 free FREE statement
25 debug DEBUG statement
26 init_arr INITIALIZE ARRAY statement
27 init_obj INITIALIZE OBJECT statement
28 set_arr_sz SET ARRAY SIZE statement

	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	104 284

Chapter 7: Support for Runtime Debugging	

The .comment Pseudo-op	

The .comment pseudo-op is used to associate an arbitrary comment string with a
memory address. Here is the general form:	

.comment "CommentString"

Here is an example usage:	

.comment "Reg 4 contains X"

This string is associated with the memory location. When that memory location is
examined using the debugger, the debugger may display that information.	

The .comment pseudo-op is designed to help break apart complex statements.
The .comment instruction can be inserted by the compiler to explain what it is
doing or to document something not covered by the .stmt pseudo-ops. A prime
example would be to document a function or method invocation within a larger
expression.	

Example Consider this KPL source code, which contains a function call (foo) and a
message send (bar) within an expression.	

…
i = foo (i) + x.bar (k)
if (a >= b)
…

The compiler might produce the following assembly code. We assume the compiler
is smart enough to insert a .stmt pseudo-op before the code for each statement and
a .comment before each function or method invocation. (I’ve highlighted in bold the
debugging pseudo-ops inserted by the compiler. I’ve also added comments to
explain what the code is doing, although it is unlikely the compiler will provide such
useful comments.)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	105 284

Chapter 7: Support for Runtime Debugging	

…
.stmt "AS",line=87
loadd r1,16(sp) # argument i
.comment "call foo"
call P_Foo_34 # perform call
stored 32(sp),r1 # save in temp
loadd r1,40(sp) # receiver x
loadd r2,48(sp) # argument k
.comment "send message bar"
loadd t,0(r1) # perform send
jalr lr,88(t) # .
loadd r2,32(sp) # retrieve temp
add r1,r1,r2 # perform addition
stored 16(sp),r1 # save in i
.stmt "IF",line=88
blt r3,r4,_Label_97 # if (a >= b) ...
…

Next, assume the program is executed and an error has occurred at runtime. Assume
the debugger tool is activated and the programmer wishes to use the “disassemble”
command to display the contents of memory.	

Here is how the debugger might display memory contents. Using the debugging
information, the debugger is able to display the debugging information (highlighted
in bold). This additional information makes a straight memory dump
comprehensible.	

...
ASSIGNMENT (line 87)
00000AB00: 1E0010F1 load.d r1,16(sp) # offset = 0x10

call foo
00000AB04: 190013CE call P_Foo_34 # PC + 0x13C
00000AB08: 220021F0 store.d 32(sp),r1 # offset = 0x20
00000AB0C: 1E0028F1 load.d r1,40(sp) # offset = 0x28
00000AB10: 1E0030F2 load.d r2,48(sp) # offset = 0x30

send message bar
00000AB14: 1E000018 load.d t,0(r1) # offset = 0x0
00000AB18: 1A00588E jalr lr,88(t) # offset = 0x58
00000AB1C: 1E0020F2 load.d r2,32(sp) # offset = 0x20
00000AB20: 00010211 add r1,r1,r2
00000AB24: 220011F0 store.d 16(sp),r1 # offset = 0x10

IF (line 88)
00000AB28: 12001434 b.lt r3,r4,0x14 # if (r3<r4) goto _Label_97
...

Blitz-64: Assembler and Linker / Porter	 	 Page of 	106 284

Chapter 7: Support for Runtime Debugging	

Perhaps the compiler is clever and is able to generate a more descriptive string for
the .comment. For example, the compiler might insert something like:	

.comment "call foo (i)"

.comment "send message x.bar(k)"

Of course the more numerous the .comments are and the more descriptive the
strings are, the more space will be consumed in the object and executable files to
contain this debugging information. Therefore, the compiler may elect to insert
minimal debugging information. [Note that the assembler identifies identical strings
and will represent each string only once. So if the same string is used repeatedly in
many .comment pseudo-ops, no additional space will be required for subsequent
uses of the same string.]	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	107 284

Chapter 8: Assembler
Programming Conventions	

Quick Summary	

• Function calling conventions are described.	
• Support for debugging is discussed.	
• Representation for objects and classes is described.	
• Method dispatching is described.	
• Examples are given showing how code can be compiled into assembly.	
	 — Some common compilation patterns are given.	
	 — The fit of the Blitz-64 instruction set to the KPL language is discussed.	

Function Calling Conventions	

Whenever some code contains a “call statement” to invoke a function, we refer to
that code as the “caller” or “calling code”. The function being invoked is referred to
as the “called” function or the “callee”.	

The caller and called functions are often compiled separately and the compiler has
no knowledge of one function when compiling the other. Therefore, a set of
“function calling conventions” is adopted and used for all functions. Assuming the
code generated for the caller and for the called functions both respect these
conventions, the function invocation and return will work properly.	

The compiler will follow these conventions, but assembly language programmers
are free to do anything they want. For hand-coded assembly functions that call
compiler-generated functions, or for hand-coded assembly functions that are meant
to be called by compiler-generated code, it is mandatory that the calling conventions
are followed. For large assembly programs, the programmers would be well-advised

Blitz-64: Assembler and Linker / Porter	 Page of 108 284

Chapter 8: Assembler Programming Conventions	

to follow the standard calling conventions. (Actually, nobody writes large assembly
language programs any more, so this is a moot point.)	

For convenience, we repeat the register usage conventions:	

	 	 Alternate	
	 	 Name 	 Function 	
	 r0	 	 Zero	
	 r1	 	 Argument 1 / Return Value	
	 r2	 	 Argument 2	
	 r3	 	 Argument 3	
	 r4	 	 Argument 4	
	 r5	 	 Argument 5	
	 r6	 	 Argument 6	
	 r7	 	 Argument 7	
	 r8	 t	 Temp register, used by assembler/linker	
	 r9	 s0	 Work reg (caller-saved)	
	 r10	 s1	 Work reg (caller-saved)	
	 r11	 s2	 Work reg (caller-saved)	
	 r12	 tp	 Thread data pointer	
	 r13	 gp	 Global data pointer	
	 r14	 lr	 Link register	
	 r15	 sp	 Stack pointer	

Consider a function named “foo”; we use the CALL and RET instructions to invoke
the function. For example:	

Source file of caller:	

…
call foo
.import foo
…

Source file of the called function:	

foo:
.export foo

	 … Code for foo …	
ret

Blitz-64: Assembler and Linker / Porter	 	 Page of 	109 284

Chapter 8: Assembler Programming Conventions	

If the caller and the called code are in the same source file, then we dispense with
the .import pseudo-op instruction.	

Next, we give the basic function calling register conventions including the rules
for passing arguments.	

Let’s define an argument to be “small” if its size is 8 bytes or smaller. This means all
arguments with a basic type—i.e., int, word, halfword, byte, bool, double, and
pointer—are small. Some objects, structs, and unions may also be small. Every
object requires at least an 8 byte header (the dispatch table pointer) which means
the object would have no fields in order to be “small”, but that might happen. Arrays
are never “small” since they have a header of 8 bytes plus at least 1 element.	

•	The first 7 “small” arguments will be passed in registers r1, … r7.	

•	A small argument that is passed in a register will be sign-extended whenever it
is of less than 64 bits. For example, an argument of type “byte” will occupy the
entire register.	

•	If there are fewer than 7 small arguments, they will be passed in registers r1 …
rN. For example, if arguments 1, 2, 5, and 9 are the only small arguments, they
will be passed in registers r1, r2, r3, and r4. The remaining registers (r5, r6,
and r7) will contain garbage, by which we mean they contain the remnants of
previous computations by the caller.	

•	All remaining arguments are passed from caller to callee by being placed in
memory on the runtime stack, as described later.	

• If there is a return value and it is “small”, it will be returned in register r1. If
there is a return value but it is not small, it will be returned on the runtime
stack.	

• Upon return, registers r2 … r7 will contain garbage. Register r1 will also
contain garbage, unless the function returns a small value, in which case r1 is
used to return that value.	

• Register r8 (i.e., register t) is the “temporary work register”. Upon invocation
it will contain garbage and the callee can make no assumptions about its value.
The register may be used by the callee, as needed. Upon return, the register is
garbage and the caller can make no assumptions about its value.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	110 284

Chapter 8: Assembler Programming Conventions	

• Registers r9, r10, r11 (i.e., s0, s1, s2) are known as the “work registers”. Upon
entry, they will contain garbage and the callee is free to use them as needed.	

• Registers r1 though r11 (i.e., r1…r7, t, s0…s2) are said to be “caller-saved”.
The caller must not assume their values will be preserved across the call. If they
contain important information to the caller, then that function is responsible for
saving their contents before the call and restoring them after the called function
returns. Thus, the callee is free to use these registers without saving their
contents first.	

• Register r12 (i.e., tp) is the “thread pointer”. Register tp is typically fixed and
unchanging throughout the execution of a program. It is used to point to a
region of memory that is specific to an individual thread. In this way, a function
can determine in which thread it is executing and can access any per-thread
data. This register is said to “callee saved” in the sense that it must not be
modified by the callee. If, for some strange reason, the callee changes its value, it
must first save and then restore that value before returning.	

• Register r13 (i.e., gp) is the “global pointer”. This register typically contains a
fixed value which is used to making accessing static data (i.e., global variables)
easier. This register typically remains unchanged throughout the entire
program execution. This register is said to be “callee saved” in the sense that it
must not be modified by the callee. If, for some strange reason, the callee
changes its value, it must first save and then restore that value before returning.	

• Register r14 (i.e., lr) is the “link register” and is used directly by the CALL and
RET instructions. This register is loaded with the return address by the CALL
instruction so, upon invocation of a function, this register contains the return
address. The RET instruction depends on this register containing that return
address. If the called function intends to call other functions, it must first save
the contents of register lr and then restore lr before executing its own RET
instruction.	

• Register r15 (i.e., sp) is the “stack pointer” register. It is callee-saved and must
not be modified. More precisely, anything pushed onto the runtime stack must
be popped before return, so there must be no net change to this register.	

By “the register will contain garbage”, we mean that it will contain some
undetermined, unspecified value. Upon invocation, the caller may have left the
results of some previous computation in the register. However, the caller will no
longer need that value, so the callee need not save that value and is free to use the

Blitz-64: Assembler and Linker / Porter	 	 Page of 	111 284

Chapter 8: Assembler Programming Conventions	

register. Upon return, the caller must assume that “garbage” registers contain
undefined values. The caller cannot assume that these registers contain whatever
the caller put in them before the function invocation.	

When arguments are passed in registers, the register will contain these values:	

	 Arg Type	 Register Contains…	
	 int	 64 bit signed integer	
	 pointer	 36 bit address; the upper 28 bits are undefined	
	 double	 64 bit floating point value	
	 word	 32 bit signed integer; upper 32 bits will be sign extension	
	 halfword	 16 bit signed integer; upper 48 bits will be sign extension	
	 byte	 8 bit signed integer; upper 56 bits will be sign extension	
	 bool	 64 bits (0=FALSE, 1=TRUE)	
	 object	 The object, which must be exactly 64 bits in size	
	 struct/union	 The struct/union, which must be ≤ 64 bits in size	

When a value smaller than 64 bits is passed in a register, the value will be sign-
extended.	

Whenever the processor uses the contents of a register as an address, the upper 28
bits are ignored. We never care about the upper 28 bits of an address. Generally, the
upper bits of a pointer are zeros.	

For other values, it is critical that the upper bits are sign-extended. Consider how a
byte value of -1 might be passed in a register:	

0xFFFF_FFFF_FFFF_FFFF Correct
0x7FFF_FFFF_FFFF_FFFF Incorrect

Imagine the code in the called function wishes to add +1 to the value. If the register
contains the sign-extended value, then it works correctly, yielding 0. If the register
contains the incorrect value, an Arithmetic Exception is erroneously generated.	

The following is the meaning of the 8 bits stored in a boolean variable are:	

	 0 = FALSE	
	 anything else = TRUE	

Typically, the value 1 is used for TRUE. (The compiler always makes the comparison
against 0, and never against 1. However, when comparing two bool values, the

Blitz-64: Assembler and Linker / Porter	 	 Page of 	112 284

Chapter 8: Assembler Programming Conventions	

compiler is allowed to use a single EQ test. This guarantees a correct result as long
as TRUE is always represented with 1 and other non-zero values are avoided.)	

Commentary Concerning the design choices for register calling conventions, there
are several questions:	

•	 How many registers shall be devoted to argument passing?	
•	 Shall some registers be declared to be “callee-saved” and how many?	
•	 Shall some registers be “caller-saved work registers” and how many?	

We decided to devote a lot of registers to argument passing.	

Note that almost all functions have 7 or fewer arguments. Passing arguments in
registers is very important for efficiency and 7 covers almost all cases. Also note that
any register set aside for arguments that is not needed for that purpose,
automatically becomes a “work register” for the callee function. So in many cases, 7
registers will suffice for all arguments and a few work registers. Notice that the
argument numbers 1, 2, 3, … coincide with the register numbers r1, r2, r3, …	

The thinking here is that every argument has to be “marshaled” (i.e., the argument
expression must be evaluated and the result placed somewhere where the callee can
find it). In order to perform this marshaling, each argument must at least be moved
into a register in the caller’s code. Moving the argument to memory is an additional
step which may or may not be necessary. The Blitz-64 strategy is to try to avoid
these STORE instructions.	

The caller can’t know which arguments are best kept in memory; only the callee can.
So the idea is to delay saving the arguments to memory. This allows the callee to
save whichever arguments to memory it chooses. Leaving all arguments in registers
gives the maximal freedom to the callee to determine which arguments to keep in
registers and which to move into memory.	

For functions with fewer than 7 arguments, there will naturally be left-over registers
which can be used as “work” registers by the callee. For functions with 7 or more
arguments, all registers will be in use upon function entry. Presumably some
arguments will be needed immediately, but the caller cannot know which. If the
callee needs additional work registers beyond those otherwise available, it will be
required “spill” some registers to memory. But only the callee can choose the best
registers to spill. With up to 7 arguments in registers, we are effectively giving the
decision making to the callee, where it can be made more effectively.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	113 284

Chapter 8: Assembler Programming Conventions	

The t register is a very local temporary work register, frequently used in synthetic
instructions, so its use is fixed.	

The registers tp, gp, lr, and sp have dedicated uses.	

This leaves 3 registers: s0, s1, and s2.	

Initially, we defined s0, s1, and s2 to be callee-saved, but reversed this decision and
made them caller-saved.	

Either choice has pitfalls: In one case, the caller must save them every time a
function call is made, even though many callees may ignore them, which is a waste.
In the other case, the callee must save them if they will be needed and restore them,
even if they don’t contain any valid caller data; again a waste.	

It probably makes sense to have a few callee-saved registers. The compiler can look
at each function “f” and make decisions about which registers to use. If “f" contains
many functions calls, it makes sense to keep data in callee-saved registers, with the
hope that the callees will be able to avoid using these registers. If there are few
function calls in “f”, then it makes better sense to keep data in caller-saved registers,
since this allows “f” to avoiding saving the registers, with the hope that “f”s caller
does not use the register.	

Note that if a function “f” is small-ish, then it often won’t need extra registers.
Furthermore, if “f” is small, it is also more likely to be in-lined, in which case the
issue is moot. On the other hand, if “f” is large-ish, then it is likely “f” will need the
extra registers. And since “f” is large, it is likely its execution will require a lot of
time. So it makes sense for “f”s caller to save the registers, if necessary, relieving “f”
of the need to spill registers to memory.	

We chose to make s0, s1, and s2 caller-saved but not contain arguments because
there are few functions requiring more than 7 arguments. In those few cases where
there are, we still need a couple of work registers available for computation, or else
we’ll have to immediately spill the arguments to memory, which defeats putting
them in registers in the first place.	

This is all pretty sketchy reasoning and this may be an open research question
deserving serious experimentation. Perhaps Blitz-64 can be used to try variations of
the calling conventions, to try to locate the optimum balance between caller-saved
and callee-saved registers. It is unclear how much performance potential awaits
discovery.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	114 284

Chapter 8: Assembler Programming Conventions	

The Runtime Stack	

A runtime stack is maintained and the sp register points to the “top” of this stack.	

The stack grows downward, from high memory addresses towards location 0.	

The “top” of the stack is thus “below” the items deeper in the stack, in terms of
memory addresses.	

The sp register is decreased in value for a “push” operation and increased in value
for a “pop” operation.	

The sp register points to the first byte of the item at the top of the stack. The
remaining bytes of the top item can be accessed with positive offsets from register
sp. Items below the stack top (that is, deeper in the stack) are also accessible with
positive offsets.	

When referring to stacks, we use the words “top”, “above” and “upper” to mean those
items which are closest to the stack top. Since the runtime stack grows downward,
these terms can be confusing since those items actually have “smaller” addresses
and are located “lower” in memory. [This can be confusing: When item x is said to be
“above” item y, it can mean item x is closer to the stack top and thus has a smaller
address, or it can mean that item x has a larger address and is thus farther from the
stack top. The best approach is to be careful to say “larger or smaller addresses”, or
“closer to the stack top” and “deeper in the stack”.]	

The sp register will always be an even multiple of 8. In other words, whenever an
item is pushed onto the stack, that item will be rounded up in size to an integral
number of doublewords.	

Upon entry to a function, the stack top register sp will always point to the top item
in the stack, or more precisely, to the first byte of the top item. After returning from
the function, there will be no net changed to the stack. In particular, the sp register
will be unchanged at the time of the RET instruction. Furthermore, there will be no
changes to items already in the stack (with a couple of exceptions discussed later).
In other words, the bytes with addresses equal and greater than sp will be
unchanged by the invocation and return of a function.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	115 284

Chapter 8: Assembler Programming Conventions	

However, there is no such guarantee about bytes above the top of the stack, i.e., the
bytes with addresses lower than the value in sp. The called function is free to push
items onto the stack (thereby overwriting whatever was in those bytes), as long as
every item pushed is also popped before return.	

While we said that register sp points to the first byte of the item at the top of the
stack upon function entry and function exit, there is no constraint that bytes with
addresses below sp cannot be used during the function.	

A “leaf function” is a function that does not invoke any other functions. Many
functions are not leaf functions because they may call other functions. In other
words, a leaf function does not contain any CALL instructions, and a function that
contains CALL instructions is not a leaf function.	

Since a leaf function will not call any other functions, it will not need to use register
lr. Thus, the leaf function can leave its own return address in lr. There is no need for
the leaf function to save its return address. On the other hand, a non-leaf function
must save its own return address before calling other functions. A non-leaf function
must save the value of lr and must restore it before returning. Thus, a non-leaf
function will require more instructions on entry and on return than a leaf function.	

Functions are free to make use of memory locations above the stack top (i.e., at
addresses that are less than register sp). This is important for leaf functions.	

Since a leaf function will not be calling other functions, it does not need to worry
about another function pushing data onto the stack. Therefore, the leaf function is
free to use memory “above” the top of the stack (i.e., at memory addresses less than
the sp register) to store its temporary and local variables.	

A leaf function does not need to decrement sp upon function entry or increment sp
upon function exit. It can simply use negative offsets from sp for the storage of its
data. This saves two additional instructions upon the entry and exit of the leaf
function.	

However, it is important to note that the OS kernel can not rely on the sp register to
delimit the runtime stack. The OS kernel may not make the assumption that only
bytes with addresses greater than or equal to the sp register contain valid data.
Because leaf functions are using bytes “above” the stack top, this assumption is
incorrect.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	116 284

Chapter 8: Assembler Programming Conventions	

Obviously, the OS kernel or any additional interrupting code cannot push
information onto the stack using the sp register and expect a return to the
interrupted code to be possible. Since the interrupted code could have been a leaf
function, such an interrupting process that uses bytes beyond the stack top may
possibly alter or overwrite bytes that were in use by the interrupted code.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	117 284

Chapter 8: Assembler Programming Conventions	

Argument Locations and the Parameter Block	

As mentioned previously, the first 7 arguments of basic types are passed in registers
and all remaining arguments are passed in memory. Next, we describe this in detail.	

The remaining argument values are passed on the runtime stack and will be at the
top of the stack upon function entry. The following diagram shows the stack and sp
register upon function entry, just before the first instruction is executed.	
The caller will allocate space for all arguments in the parameter block. The called
function will rely on the space being allocated exactly as described here.	

The parameter block will include space for both arguments that are passed in
registers and for arguments that must be passed on the stack. For arguments that
are not passed in registers, the values will be placed in the parameter block by the
caller.	

For arguments that are passed in registers, space will also be allocated in the
parameter block. The space will be present, but will contain no useful data. The
called function is free to use that space as a place to store the argument values if it
wishes.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	118 284

Chapter 8: Assembler Programming Conventions	

If there is a returned value of 8 bytes or smaller, it will be returned in register r1. If
larger than 8 bytes, the function will place it at offset 0 in the parameter block. In 2

any case, the caller must assume that all argument values stored in the parameter
block before the call are lost / overwritten / trashed by the called function.	

(Note that allocating extra uninitialized bytes in the parameter block has a zero
performance cost. The caller is not a leaf function, so it must allocate a stack frame
regardless. Adding several bytes to the size of the stack frame only changes the value
by which sp must be decremented when the stack frame is created, and incremented
when the function returns. Since the bytes are uninitialized, no additional
instructions are required.)	

The parameter block will occur at the top of the stack and will contain space for each
argument. The arguments will be placed in the order in which they appear in the
source code. Padding bytes will be inserted, as required to meet the alignment
requirements for each argument.	

To illustrate, here is a function prototype:	

function foo (
i1, i2: int,
p3, p4: ptr to …,
c5: MyClass,
b6, b7: bool,
a8: MyArray,
i9, i10: int,
c11: MyClass,
h12: halfword,
w13,w14: word,
h15: halfword,
w16: word,
d17: double,
b18: bool,
b19, b20: byte,
h21: halfword)

The layout of the parameter block is shown next. 	3

 In the event that the returned value is larger than all argument values combined, the size of the 2

parameter block will be increased as necessary to accommodate the returned value.

 We assume that objects of MyClass are 16 bytes in size and arrays of type MyArray require 80 3

bytes.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	119 284

Chapter 8: Assembler Programming Conventions	

The first 7 arguments that are 8 bytes or shorter will be transmitted in registers, as
shown. All other arguments will be placed by the caller on the stack. Upon entry to
the called function, the arguments will be found at the indicated offsets from the
stack top, sp.	

 Offset	 Size	
0 r1 8 i1: int
8 r2 8 i2: int
16 r3 8 p3: ptr to …
24 r4 8 p4: ptr to …
32 16 c5: MyClass
48 r5 1 b6: bool
49 r6 1 b7: bool
50 6 ...padding...
56 80 a8: MyArray
136 r7 8 i9: int
144 8 i10: int
152 16 c11: MyClass
168 2 h12: halfword
170 2 ...padding...
172 4 w13: word
176 4 w14: word
180 2 h15: halfword
182 2 ...padding...
184 4 w16: word
188 4 ...padding...
192 8 d17: double
200 1 b18: bool
201 1 b19: byte
202 1 b20: byte
203 1 ...padding...
204 2 h21: halfword
206 2 ...padding...

The total size of this parameter block is 208 bytes; the parameter block will always
be a multiple of 8 bytes in size.	

The called function will probably not be a leaf function, so it will itself need its own
stack frame. Upon entry, the called function will begin by pushing a new frame by
decrementing sp by some amount. This will, of course, alter the offsets it must use to
access the parameter block.	

For example, if function foo needs a stack frame of (say) 3000 bytes, then it will
subtract 3000 from sp within its entry prologue. Then, in order to access an

Blitz-64: Assembler and Linker / Porter	 	 Page of 	120 284

Chapter 8: Assembler Programming Conventions	

argument such as “w16” at offset 184 in the parameter block, the called function will
need to use offset 3184 from sp.	

Debugging Support	

Bugs occur and programs must be debugged. A program called a “debugger” is used
to assist the programmer in finding bugs.	

In Blitz, the debugger will be invoked immediately as a result of an error occurring.
At the moment the debugger becomes active, the program is frozen. Its virtual
memory is still intact, along with other state information such as the values of the
registers.	

In this section, we will discuss how the code generated by the compiler interacts
with the debugger.	

The debugger is itself a program, separate from the program being debugged. There
are several possible organizations:	

(1)	The debugger will is integrated with the target program and inhabits the
same virtual address space as the program being debugged.	

(2)	The debugger is integrated within the kernel and is a part of the kernel.	

(3)	The debugger is a separate user-level process which makes use of special
features of the kernel to access the target program’s memory.	

(4)	The code is being emulated and the debugger is part of the emulator.	

As of this writing, the last option is fully implemented and is used to debug
programs written in KPL and assembly language.	

In KPL, all errors result in “throwing” an error. The program itself may catch the
error, in which case the program may take appropriate actions. But if not caught, the
default action is to invoke debugging.	

The first task of the debugger is to determine where execution was when the error
occurred. For many types of error, there will be additional information about the

Blitz-64: Assembler and Linker / Porter	 	 Page of 	121 284

Chapter 8: Assembler Programming Conventions	

error. For example, if an array index is out of range, we want to capture and make the
(incorrect) index value available.	

In Blitz, errors are detected in either of two ways. First, some types of error will
cause a runtime exception. Second, the compiler will insert code that will explicitly
test for other types of errors.	

In the first case, errors caught by runtime exceptions are checked by the hardware
and involve no overhead, since there are no additional instructions. As part of the
exception processing, registers (including the PC) will be saved and an error
handling function will be invoked.	

In the second case, errors caught with explicit tests will cause a CALL to be made to
error handling code. (Typically, the code generated by the compiler will test for an
error condition and will branch around a CALL instruction.) The CALL instruction
will be executed only if the error happens and, as normal for any CALL, the return
address will be saved.	

Regardless of how the error handler was invoked, the value of the PC register at the
time of the error will be captured and used to locate where in the code the error
arose. Also, any other pertinent information (such as an invalid array index) will be
captured and saved by the error handler function.	

Unfortunately, the value of PC is a memory address, i.e., a binary number not likely
to be meaningful to a human. To help the human, this address must be translated
into meaningful information, such as a line number within some source code file.	

Also, the programmer may wish to examine the contents of variables and
parameters. These will be stored at various offsets from the stack top. To assist the
programmer, the debugger will need to know which function was executing and
what offsets were used for various parameters and local variables.	

In other words, the debugger will need some information about the program being
debugged. Some debugging information is specified with pseudo-ops such
as .function, .local, and .stmt.	

But where is this information to be stored?	

Information about the program (which will be used by the debugger) is stored in
two places:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	122 284

Chapter 8: Assembler Programming Conventions	

• Within the executable file	
• Within memory, alongside of the program code and data	

Blitz stores most of the debugging information in the executable file, but stores some
information in memory with the target program’s instructions.	

The debugging info derived from pseudo-ops (such as .function, .local, and .stmt) is
stored in the executable file. The KPL compiler automatically generates the
debugging pseudo-ops so all programs carry the necessary information in their
executable files.	

There is also a concern with hand-coded assembly language routines. However, it is
not a significant burden to include debugging pseudo-ops in hand-coded assembly
functions.	

The KPL compiler will place information about types and objects directly in memory
in the form of dispatch tables and class descriptors. This is done because this
information may be needed at runtime for other (non-error) operations, such as the
isKindOf and isInstanceOf functions.	

Generally speaking, storing the debugging information in the executable file is
preferred over placing information in the program itself. Placing the information in
memory at runtime increases the program size and increases the time to load the
program, as well as enlarging the program’s memory footprint.	

However, placing the debugging information in the executable file requires
participation by the assembler and linker. Since the debugging information contains
information about the placement of code and variables in memory, the assembler
and linker are required to carry this information through from the .s file and add it
to the executable file. Also, at the time of an error, the debugger must read in the
executable file, parse it, and build an internal representation.	

We consider it mandatory that the debugger must always be invoked for any
program that has an error. This means the hooks for error handling must be present
in every program. The programmer must never be required to recompile the
program with special options or rerun a faulting program.	

In Blitz, the debugger is always invoked on error and begins by accessing the
original executable file from which the program was loaded to obtain the necessary
debugging information.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	123 284

Chapter 8: Assembler Programming Conventions	

One issue concerns the question of locating the executable file from which the
program was loaded.	

(It is possible that the executable file will get modified or deleted between the time
the program is loaded and the time the debugger is invoked. We place the burden of
guarding against this on the programmer who is using the debugger.)	4

The key question the debugger must answer is:	

	 Which source statement was executing at the time of the error?	

The debugger must determine which source level statement was executing and
within which function.	

To accomplish this, the debugger builds a reverse mapping from PC values to source
statements. From the PC value captured by the error handler, the debugger can
search and determine the source statement and the identity of the function that
contains that statement.	

Experience has shown that naming the error and simply identifying the source
statement line number is incredibly useful in debugging. This cannot be overstated.	

This reverse mapping will fail if a bug causes a program to make a jump to a
“random” location. In that case, the PC value is garbage.	

But how likely is such a random jump? And how can it occur in KPL code?	

We assume that user-level code is always kept in read-only pages so it can never be
overwritten. Jump tables (e.g., dispatch tables or switch jump tables) are also kept in
read-only pages. Therefore, these are not a source of random jumps.	

Consider a program working with values of type “ptr to function”. While a mistake
may cause incorrect output, the KPL type checking system will prevent the program

 If the debugging information had been stored in memory alongside the code, this would not be a 4

problem; the debugging information is already there when needed.	

One approach is to disallow the debugger to be used on a program that was loaded in the past. In
other words, to debug a program, the programmer must restart the program from within the
debugger. But this has the shortcoming of making it difficult to debug transient errors. The bug
may not manifest itself upon restarting the program. We must be able to begin debugging a failed
program immediately, without having to restart it.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	124 284

Chapter 8: Assembler Programming Conventions	

from taking a random jump which could confuse the debugger. However, if the
programmer uses an “unsafe” operation on a function pointer, this could cause a
program to take a random jump. 	5

This leaves return addresses stored in stack frames. Of course a bug can corrupt the
stack and result in a RET instruction jumping to a random location. 	6

Random jumps are, in fact, almost non existent.	

In practice, the Blitz debugger reports the location of errors very reliably.	

Function Prologue and Epilogue	

Often a function needs a stack frame to be pushed on the stack, in which to store
local variables. The sp register is used to point to the current top of the stack.	

In some processors, a second register is devoted to pointing to and accessing the
stack frame. This register might be called the “frame pointer” (or “fp” register). The
Blitz-64 architecture is designed so a second register is not needed. In Blitz, there is
no “fp” register. Instead, the sp register is used to access the stack frame, as we
describe next.	

The sequence of instructions occurring at the beginning of a function is called the
function prologue. The sequence of instructions occurring at the end of a function
(executed directly before returning) is called the function epilogue.	

The prologue creates and pushes a stack frame on to the stack when the function
begins execution. The epilogue pops the stack frame off the stack before returning.	

The same approach can be used for methods, as well as functions, so these
sequences are sometimes called the method prologue and method epilogue. In
this discussion, we’ll just talk about functions, although the same works for
methods. Sometimes, the terms entry code sequence and exit/return code
sequence are used.	

 Programs that perform unsafe pointer manipulations on function pointers are extremely rare and 5

weird.

 Let’s not forget that another source of random jumps in is the presence of a compiler error.6

Blitz-64: Assembler and Linker / Porter	 	 Page of 	125 284

Chapter 8: Assembler Programming Conventions	

Of course, the programmer can place a return statement anywhere within a
function and the function can contain many returns. In the following, we will place
the function epilogue as if there is only a single return statement at the bottom of the
function.	

Most likely, the compiler will place a copy of the epilogue sequence at every place
where a return statement occurs. 	7

Leaf Functions	

A leaf function is defined as a function that does not call other functions. As such,
the return address — which is in register lr on entry to the function — can remain in
lr and does not need to be saved on the stack.	

Here is the code that will be used for the entry and return in a leaf function.	

Leaf function
foo:

…
ret

There is zero prologue and epilogue overhead for a leaf function.	

Note there is no need to touch or access memory, as long as all arguments and work
variables are kept in registers.	

 An alternative is for the compiler to include a single copy of the epilogue statements. The 7

compiler will insert a JUMP to the epilogue sequence wherever a return statement is used. Since
the epilogue is about 3 statements, inserting a JUMP instruction is generally considered too much
overhead.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	126 284

Chapter 8: Assembler Programming Conventions	

If the leaf function needs additional storage for locals and temporary variables, it can
place these on the stack, above the stack top, i.e., using negative offsets from
register sp.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	127 284

Chapter 8: Assembler Programming Conventions	

Non-Leaf Functions	

If a function calls other functions, we call it a non-leaf function. 	8

For a non-leaf function, the code must save register lr and adjust the stack top
pointer to push a new stack frame onto the stack:	

Non-leaf function
foo:

store.d -8(sp),lr
addi sp,sp,-FRAME_SIZE
…
addi sp,sp,FRAME_SIZE
load.d lr,-8(sp)
ret

In the above code, “FRAME_SIZE” is an integer which gives the size of the frame. The
frame size and layout will be computed by the compiler. The compiler must compute
the size needed to store parameters for each of the functions that “foo” invokes (the
maximum size needed for all functions will become the size of the parameter block).
The compiler will also determine the amount of storage needed for locals and
temporaries within foo, plus 8 bytes in which to store the return address.	

 The KPL compiler will often insert error checking tests and, if triggered, the code will execute a 8

CALL to an error handler function. While the source code may not call any functions explicitly, any
such implicit error-related CALLs will render the function a non-leaf function.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	128 284

Chapter 8: Assembler Programming Conventions	

Here is what a stack frame looks like:	

Within foo, the local and temporary variables will be accessed with positive offsets
from sp. Access to the arguments to foo will also be made using positive offsets to
sp. The exact offsets to the arguments can only be determined after the size of foo’s
frame has been determined.	

The above code sequences will need a slight modification if FRAME_SIZE exceeds
32,767 since the ADDI instruction has that limit. 	9

Reconstructing the Call Stack	

Note that this organization provides enough information for the debugger. After an
error occurs, the debugger is given only:	

 For larger frames, the compiler will need to generate an additional instruction for the prologue 9

and an additional instruction for the epilogue. See the commentary in the ISA Reference Manual
immediately following the description of the UPPER16 instruction for more information.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	129 284

Chapter 8: Assembler Programming Conventions	

PC	 The address at which the error occurred	
sp	 A pointer to the stack top at the time of the error	

From the PC, the debugger will use the reverse mapping (described elsewhere in
this document) to determine which source statement was executing and, from that,
which function was currently active. From the function information, the debugger
can determine the size of the stack frame, which will allow it to locate the slot
containing the return address. Then, it can compute the stack top on entry to the
function and the statement from which the function was called.	

In this way, the debugger can work backwards through the stack, showing the entire
call history.	

Object Representation	

Consider the following class definition:	

	 class MyClass	
	 	 i: int	
	 	 b: bool	
	 	 w: word	
	 	 p: ptr to MyClass	
	 	 h: halfword	
	 endClass	

Every object will be located on a doubleword aligned address and all fields within
the object will be properly aligned, according to their individual requirements. For
example, the offset of the word field w will be an even multiple of 4, ensuring that it
will be word aligned.	

Each object of the class MyClass will have the five fields shown above, along with a
hidden field, known as the “dispatch table pointer”.	

Every object will contain a dispatch table pointer, which will always be the first field
in the object, i.e., the pointer will always be at offset 0 of the object. This pointer will
be a 64-bit field containing the address of a “dispatch table”.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	130 284

Chapter 8: Assembler Programming Conventions	

Objects described by the above definition will be laid out as:	

	 field 	 type	 offset	 size	
	 <dispatch pointer>	 	 0	 8	
	 i	 int	 8	 8	
	 b	 bool	 16	 1	
	 <padding>	 	 17	 3	
	 w	 word	 20	 4	
	 p	 ptr	 24	 8	
	 h	 halfword	 32	 2	
	 <padding>	 	 34	 6	
	 	 	 40	 size of object	

There will be 0-7 bytes of padding added to force the size of every object up to a
multiple of 8 bytes.	

If the class is a subclass of another object, then all the fields of the superclass will be
placed before the fields of the subclass. The size of the superclass will be a multiple
of 8, which will ensure that the fields of the subclass (which follow) will be properly
aligned.	

There will only be one dispatch pointer and it will always be at offset 0.	

The compiler will know the offset of every field in an object and these fields will
always be properly aligned. Thus, the LOADx and STOREx synthetic instructions can
be used directly to retrieve and update fields.	

For example, assume that register r1 contains a pointer to an object of type MyClass:	

	 To retrieve the “int” field at offset 8:	
loadd …,8(r1)

	 To update the “word” field at offset 20:	
storew 20(r1),…

Note that LOADx and STOREx are synthetic instructions. Any offset can be specified
in the assembly code, up to the full range of memory. The assembler will generate
only as many machine instructions as required. For any object under 32,767 bytes in
size, a single instruction will suffice. Since it is unusual for objects to be this large, in
most cases a single instruction will be used. However, notice that extremely large

Blitz-64: Assembler and Linker / Porter	 	 Page of 	131 284

Chapter 8: Assembler Programming Conventions	

objects will be automatically accommodated without additional measures or
exceptions.	

Method Invocation and Dynamic Dispatching	

For every class definition, the compiler will produce a single dispatch table. The
dispatch table will begin with a 64 bit field called the “class pointer”. This pointer
will be followed by a number of 64 bit fields, called “jump slots”. Each jump slot will
correspond to one message that objects of this class understand. The dispatch table
will contain a jump slot for each message defined in the class, as well as a jump slot
for each message defined in superclasses.	

Each jump slot will contain a JUMP instruction. The JUMP instruction is a synthetic
instruction that will be expanded to either one or two machine instructions. This
expansion will be done by the linker, after it has determined the exact address of the
target location.	

Thus, the JUMP will be either 4 or 8 bytes. All jump slots are 8 bytes and, for JUMPs
that require only 4 bytes, the linker will insert padding bytes.	

The target of the JUMP will be the code for the corresponding method. That is, the
JUMP will branch to the first instruction of the “entry prologue” sequence.	

A message is very similar to a function. In fact, the code for a message is identical to
the code for a function, with the exception that there is an additional argument. This
argument is always the first argument and is a pointer to the receiving object itself.	

Thus, the “self variable” is a pointer to the receiver and will be in register r1 upon
method entry. The first normal argument to the message will go into r2, with
remaining arguments in r3 … r7. In other words, arguments are passed to method
exactly the same way they are passed to functions, with the addition of an additional
argument (the self pointer) inserted before the other arguments.	

Likewise, the remaining calling conventions and parameter passing rules are
identical for both functions and methods.	

The only difference is in the caller’s code that invokes the method. When invoking a
function named “foo”, the caller’s code looks something like this:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	132 284

Chapter 8: Assembler Programming Conventions	

Function Invocation
mov r1,… # Evaluate argument 1
mov r2,… # Evaluate argument 2
mov r3,… # Evaluate argument 3
call foo
mov …,r1 # Retrieve returned value

Now let’s consider invoking a method named “meth”.	

For each method, the compiler will determine the offset into the dispatch table. The
code will jump indirectly through this table. We do this because the compiler must
perform dynamic dispatching. The compiler cannot know the exact class of the
object. Thus, the compiler doesn’t know which dispatch table will be used or which
method implementation will be executed. The compiler only knows the offset into
the dispatch table where a JUMP to “meth” will be found.	

Let us assume that the offset into the dispatch table for “meth” is some number
“xxx”. Then the following code sequence will perform message sending.	

Method Invocation
mov r1,… # Evaluate ptr to receiver
mov r2,… # Evaluate argument 1
mov r3,… # Evaluate argument 2
loadd s0,0(r1)
jalr lr,xxx(s0)
mov …,r1 # Retrieve returned value

The LOADD instruction will move a pointer to the dispatch table into register s0. The
JALR instruction will save the return address in the linker register lr and jump
directly to an entry in the dispatch table. This entry will be the jump slot for “meth”
and will contain a jump to the appropriate code. In other words, this code performs
a “call” to the jump slot itself. Then, immediately, a jump is made to the first
instruction of the appropriate method.	

Thus, the overhead for a message send, above what is required for a function call is
typically only two additional instructions:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	133 284

Chapter 8: Assembler Programming Conventions	

Function call:	
call/jal

Message send (typical):	
loadd # load ptr to dispatch table
jalr # jump to jump slot
jump/jal # jump to method prologue

[In comparing a method invocation to a function invocation, we are ignoring the
additional code to load the pointer to the receiver object. If we are using a method
instead of a function, then the assumption is that there is some object involved (i.e.,
the receiver object) and this object would have been passed as a normal argument
had the programmer coded this as a function. In any case, a single instruction will
often be used to load register r1 regardless of whether it is a function or a method.]	

A CALL instruction will normally expand to a single JAL instruction, but in some
cases it may expand into two instructions.	

Recall that the JALR instruction contains a 16-bit immediate field, ranging -32,768 …
+32,767. The above code sequence for a message send will work as long as the offset
into the dispatch table doesn’t exceed this number. (In particular, the dispatch table
cannot contain more than 4,094 jump slots, plus the class pointer.) It is unlikely that
any class will have (or inherit) this many methods. But if so, the compiler will have
to insert an additional UPPER16 instruction.	

Normally, the jump slot will contain a single JAL instruction, which can branch up to
-524,288 … +524,287 bytes relative to the jump slot’s location. The compiler will
typically place the dispatch table and the methods it references in the same segment,
so they will end up near each other in memory. So in most cases the jump slot will
contain only a single instruction, but in some cases it may contain two.	

Thus, the very worst case scenario is that a message send requires four more
instructions than a function invocation.	

Function call:	
call/jal

Message send:	
loadd s0,0(r1) # load pointer to dispatch table
upper16 t,s0,xxx # call to jump slot
jalr lr,xxx(t) # .
upper20 t,yyy # jump to method prologue
jalr lr,yyy(t) # .

Blitz-64: Assembler and Linker / Porter	 	 Page of 	134 284

Chapter 8: Assembler Programming Conventions	

But keep in mind that the CALL itself might have a long distance target and require
two instructions.	

Object Initialization	

In KPL, objects must be initialized before being used. The initialization is nothing
more than initializing the dispatch table pointer. Without a valid dispatch table
pointer, methods cannot be invoked on the object.	

The KPL compiler will insert a test to make sure the object has been initialized. This
test is inserted in every code sequence that invokes a method. This test requires an
additional instruction to test the dispatch table pointer to make sure it is not null.	

For clarity, this test was not shown in the above code examples.	

If the dispatch table pointer is null, error handling will be invoked. In particular, an
error will be thrown. The error is named ERROR_UninitializedObject. Perhaps the
program will catch this error, but if not, it will result in the debugger becoming
active.	

[Without the explicit test, what would happen? Since the dispatch table pointer is
missing, register s0 will be loaded with zero. Then, using some offset (xxx), a jump
will be made. This would result in a jump to absolute address xxx. Assuming this is
user-mode code running in a virtual address space, this will cause a “Page Illegal
Address Exception”. Unfortunately, the location of the actual error would be lost.
Would it be wise to add an option to the KPL compiler to give programmers the
ability to leave these tests out? This was considered and rejected.]	

Compilation Examples	

In this section, we give some examples code fragments and suggest how a compiler
might translate them into assembly language. The higher-level code is expressed in
KPL, the programming language of Blitz-64, although any similar language (like “C”
or “C++”) could have been used.	

These examples are intended to show how the Blitz-64 ISA can be used; they are not
necessarily the way the KPL compiler actually works.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	135 284

Chapter 8: Assembler Programming Conventions	

For the purposes of this appendix, we define “basic types” as:	

	 int	 64-bit signed integers	
	 word	 32 bit quantities	
	 halfword	 16 bit quantities	
	 byte 	 8 bit quantities	
	 bool	 TRUE / FALSE, stored in a byte	
	 double	 64 bit double-precision floating point	
	 ptr	 Pointer to anything, stored in 64 bit doubleword	

Non-basic types are defined as follows. Their sizes will vary:	

	 arrays	 	
	 structs / records	
	 unions	
	 objects	
	 … anything else …	

Access of Variables	

Global variables (i.e., variables defined outside any function or method) will be
allocated in fixed, unchanging locations in memory. This can be done with a single
pseudo-op.	

	 KPL:	
var
 i: int
 w: word
 h: halfword
 c: byte
 b: bool
 d: double
 p: ptr to …
 a: array […] of …

Blitz-64: Assembler and Linker / Porter	 	 Page of 	136 284

Chapter 8: Assembler Programming Conventions	

	 Assembly translation:	
i: .doubleword 0
w: .word 0
h: .halfword 0
c: .byte 0
b: .byte 0
d: .double 0.0
p: .doubleword 0
a: .skip …

(Global variables are called “static variables” by some people.)	

In KPL, all variables are assumed to be initialized to zero values. The above
translations work because .skip is guaranteed to fill the space with zeros.	

If the programmer provides an initial value, this value can always be determined by
the compiler and the translation will cause the global variable to be initialized when
the program is loaded, before execution begins.	

	 KPL:	
i: int = MAX_SIZE-1

	 Assembly translation:	
i: .doubleword 99

The translation of a simple assignment involving a global variable of basic type will
involve the use of a register, as in:	

	 KPL:	
i = i + 7

	 Assembly translation:	
loadd r2,i
addi r2,r2,7
stored i,r2

NOTE: The LOADx and STOREx instructions are synthetic instructions. They can be
used to access any location in memory. In many cases, the synthetic will expand to a
single machine instruction, but for some harder-to-reach addresses, a second
instruction will be automatically inserted by the linker. Thus there is no limit
imposed by the ISA, assembler, or linker on global variable access.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	137 284

Chapter 8: Assembler Programming Conventions	

Local variables are handled differently. In some cases, the compiler will be smart
enough to place the variable in a register and avoid all memory references.	

	 KPL:	
function foo (…)

var local: int
…
local = local + 7

	 Assembly translation:	
addi r5,r5,7 # assumes “local” is in r5

In other cases, the local variable will be placed on the runtime stack. (“Stack
frames” are often called “activation records”.)	

[Stack frames will be discussed later, but the basic idea is that a stack is maintained
for the duration of program execution. This is a stack of “frames” and the top of the
stack is pointed to by register sp (i.e., “r15”). When a function is called, a new stack
frame is pushed onto the stack and when the function returns, the frame is popped
off the stack. The sp register will point to the first byte of the stack frame (i.e., the
byte with the lowest address). All locations within the frame will accessed using
positive offsets. The “pushing” of a new stack frame is a quick and simple operation,
requiring only that the sp register be decremented by the frame size. Likewise,
“popping” is accomplished quickly by simply incrementing sp by the same amount.]	

The compiler may determine that a local variable cannot be kept in a register. In
such cases, it will allocate some space within the stack frame for the variable. This
can be because:	

• The variable is not a basic type.	
• There are not enough registers available.	
• Some code asks for the address of the variable (using the “&” operator in KPL).	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	138 284

Chapter 8: Assembler Programming Conventions	

By “basic type” we mean:	

basic type	 size in bytes	
int	 8	
word	 4	
halfword	 2	
byte	 1	
bool	 1	
double	 8	
ptr to …	 8	

KPL also supports the following types, which are “compound types”:	

array	
object	
struct / record	
union	

As an example, assume that variable local has been placed at offset 16 within the
frame. Now the compiler will need to issue LOAD and STORE instructions to access
the variable.	

	 KPL:	
function foo (…)

var local: int
…
local = local + 7

	 Assembly translation:	
loadd r5,16(sp) # assumes “local” is in the frame
addi r5,r5,7
stored 16(sp),r5

NOTE: The LOADx and STOREx instructions are synthetic instructions. They can be
used to access any offset from sp. In most cases, the synthetic will expand to a single
machine instruction. Occasionally a stack frame may exceed 32 KiBytes in size and a
second instruction will be automatically inserted by the linker. Frame sizes above 2
GiBytes in size are not expected, but will be handled by the linker, which will
automatically insert a third machine instruction. So there is no limit imposed by the
ISA, assembler, or linker on frame sizes and offsets.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	139 284

Chapter 8: Assembler Programming Conventions	

Parameters will be either passed in registers or placed on the stack. Details will be
discussed later. But the accessing of the parameter variables will use these same
instructions.	

Arithmetic Computation	

The Blitz-64 ISA and the KPL language have been designed together, to work
together. The arithmetic and logical operators of KPL correspond exactly in
semantics to the machine instructions in the ISA.	

	 KPL:	 	 	 Machine Instruction	
i + j add r1,r2,r3
i - j sub r1,r2,r3
i * j mul r1,r2,r3
i / j div r1,r2,r3
i % j rem r1,r2,r3
-i neg r1,r2
i & j and r1,r2,r3
i | j or r1,r2,r3
i ^ j xor r1,r2,r3
!(i) bitnot r1,r2
!(b) lognot r1,r2
i << j sll r1,r2,r3
i >> j srl r1,r2,r3
i <<< j sla r1,r2,r3
i >>> j sra r1,r2,r3
i == j beq r1,r2,label
i != j bne r1,r2,label
i < j blt r1,r2,label
i <= j ble r1,r2,label
i > j bgt r1,r2,label
i >= j bge r1,r2,label
b = (i==j) testeq r1,r2,r3
b = (i!=j) testne r1,r2,r3
b = (i<j) testlt r1,r2,r3
b = (i<=j) testle r1,r2,r3
b = (i>j) testgt r1,r2,r3
b = (i>=j) testge r1,r2,r3
d + e fadd r1,r2,r3
d - e fsub r1,r2,r3
d * e fmul r1,r2,r3
d / e fdiv r1,r2,r3
-d fneg r1,r2

Blitz-64: Assembler and Linker / Porter	 	 Page of 	140 284

Chapter 8: Assembler Programming Conventions	

d == e feq r1,r2,r3
d != e feq r1,r2,r3
d < e flt r1,r2,r3
d <= e fle r1,r2,r3
d > e fgt r1,r2,r3
d >= e fge r1,r2,r3

In particular, the error and boundary cases are carefully designed to match exactly.
For example, for many KPL operators, overflow is required to “throw an error”. [The
TRY-THROW-CATCH mechanism in KPL is discussed elsewhere.]	

The Blitz-64 ISA specifies that the corresponding machine instruction will cause an
exception. For example, KPL requires integer addition to throw an error in the case
of overflow; likewise, the Blitz-64 ISA requires the ADD and ADDI instructions to
signal an Arithmetic Exception when overflow occurs.	

In the course of translating some arithmetic expressions, the compiler will need to
store temporary results. In the following example, no temporary storage is needed:	

	 KPL:	
i = (i + j - k) * m

	 Assembly translation:	
Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4

add r1,r1,r2
sub r1,r1,r3
mul r1,r1,r4

However, in the next example, the result of the addition must be kept in a temporary
location, until after the subtraction is performed. In many cases, the compiler will be
able to keep this temporary value in a register. In this example, the compiler has
chosen to use register t (i.e., r8).	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	141 284

Chapter 8: Assembler Programming Conventions	

	 KPL:	
i = (i + j) * (k - m)

	 Assembly translation:	
Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4
Assume temp: t

add r1,r1,r2
sub t,r3,r4
mul r1,r1,t

The compiler may be able to use a register to store the temporary result, as in the
previous example. However, if no additional registers are available, the compiler will
be forced to allocate space in the stack frame and store the temporary result there.	

in the next example, the complier has set aside space in the stack frame at offset 24
to temporarily store the value of (i+j) until it is needed.	

	 KPL:	
i = (i + j) * ((k - m) / (n + p))

	 Assembly translation:	
Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4
Assume n: r5
Assume p: r6
Assume (i+j) is at offset 24 in stack frame

add t,r1,r2 # temp = i + j
 stored 24(sp),t # save temp in frame

sub r1,r3,r4 # r1 = k - m
 add t,r5+r6 # t = n + p

div r1,r1,t # r1 = (k-m) / (n+p)
 loadd t,24(sp) # retrieve temp = i+j
 mul r1,t,r1 # r1 = (i+j) * ((k-m) / (n+p))

In the above example, you will notice that all operations are done in the same order
specified by the source code. The compiler maintains the same order to ensure that
the overflow behavior at runtime will be exactly what the programmer expects.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	142 284

Chapter 8: Assembler Programming Conventions	

For example:	

(a + b) + c

may not overflow while the following will cause an overflow exception:	

(a + c) + b

(This can happen when a and c are very large numbers and b is a very negative
number.)	

In some cases, the compiler may be able to perform some operations at compile time
or may be able to re-order the operations with no fear of changing the overflow
behavior. For example, the following: 	

(a + 123) + 456

will overflow in exactly the cases that the following will overflow:	

a + 579

As long as there is no change in the behavior of the program, including exceptional
and error behavior, the compiler is free to reorder the operations.	

In most programming languages, wherever the programmer can specify a variable,
he or she can insert a function call instead:	

i + j + k
i + foo1(…) + foo2(…)

Whenever a function is called, it tends to involve a lot of register usage, forcing the
compiler to move temporary results into “save” locations in the stack frame.	

The KPL compiler avoids rearranging expressions since it does not always fully
understand what the code is doing. In the above example, KPL guarantees that foo1
will be called after the value of i is retrieved and before foo2 is invoked. After all,
foo1 might have some side-effect that alters the behavior of foo2, or even the value
of variable i.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	143 284

Chapter 8: Assembler Programming Conventions	

Flow of Control Examples	

Conditional statements can be translated as shown in this example:	

	 KPL:	

if (…condition…)
 …Then statements…

endIf

	 Translation Idea:	

…Evaluate condition…
if true goto Then_label
if false goto Endif_label

Then_label:
 …Then statements…

Endif_label:

If there are “else statements”, the general form is a little more complicated:	

	 KPL:	

if (…condition…)	
 …Then statements…

else
 …Else statements…

endIf

	 Translation Idea:	

…Evaluate condition…
if true goto Then_label
if false goto Else_label

Then_label:
 …Then statements…

jump Endif_label
Else_label:

 …Else statements…
Endif_label:

Blitz-64: Assembler and Linker / Porter	 	 Page of 	144 284

Chapter 8: Assembler Programming Conventions	

For example:	

	 KPL:	

	 	 if (i < j)	
 	 	 	 i = 23	
	 	 else	
	 	 	 i = j + 45	
	 	 endIf	

	 Assembly translation:	

Assume i: r1
Assume j: r2

bge r1,r2,_label_67
movi r1,23
jump _label_68

_label_67:
addi r1,r2,45

_label_68:

In order to translate flow-of-control statements, the compiler will often create new
labels and give them automatically generated names, such as “_label_67”.	

Note the reversal of the condition testing in the above example. The “less than” test
with a branch to the “THEN” statements is changed to a “greater-than-of-equal” test
to the “ELSE” statements.	

	 Condition	 Reversed Condition	
== beq != bne
!= bne == bge
< blt >= bge
<= ble > bgt
> bgt <= ble
>= bge < blt

Blitz-64: Assembler and Linker / Porter	 	 Page of 	145 284

Chapter 8: Assembler Programming Conventions	

Notice that , if done literally, the translation of:	

	 	 if (i < j) then ...	

according to the general form:	

…Evaluate condition…
if true goto Then_label
if false goto Else_label

Then_label:

is this:	

blt r1,r2,_label_66
bge r1,r2,_label_67

_label_66:

But simple patterns like this can be reduced. In this case, the following is equivalent:	

bge r1,r2,_label_67

With floating point numbers, we have the following instructions which implement
operations directly.	

	 Condition	
== feq
< flt
<= fle
> fgt
>= fge

Blitz-64 does not contain a FNE instruction. Equal and not-equals are logical
opposites, so we use FEQ to implement !=. However, with floating point, note that <
(FLT) and >= (FGE) are not opposites. Likewise, <=(FLE) and > (FGT) are not
opposites. The difference arises when one argument is not-a-number (NaN). So the
compiler must be careful not to switch FLT into FGE, or switch FLE into FGT.	

There are a number of other types of conditional expressions and there are a
number of specialized Blitz-64 instructions that are designed specifically to support
them. For example, a boolean variable can be tested.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	146 284

Chapter 8: Assembler Programming Conventions	

	 KPL Example:	
	 	 if (boolVar) …	

	 Relevant Assembly Instructions:	
btrue Reg1,Label
bfalse Reg1,Label

A pointer can be tested directly and these same instructions can be used for that.
Note that these instructions compare against zero. Thus, non-null pointers will be
interpreted as TRUE and null pointers will be interpreted as FALSE.	

	 KPL Example:	
	 	 if (ptr) …	

	 Relevant Assembly Instructions:	
btrue Reg1,Label
bfalse Reg1,Label

When the source code compares an integer to a constant value, it will typically
require an additional MOVI instruction, as in:	

	 KPL Example:	
	 	 if (i == 123) …	

	 Assembly Translation:	
movi t,123
beq Reg1,t,Label

	 or	
bne Reg1,t,Label

However, if the comparison is against zero, there are specialized Blitz-64
instructions which can be used instead, avoiding the MOVI instruction.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	147 284

Chapter 8: Assembler Programming Conventions	

	 KPL Examples:	
	 	 if (i == 0) …	
	 	 if (i < 0) …	
	 	 …etc…	

	 Relevant Assembly Instructions:	
beqz Reg1,Label
bnez Reg1,Label
bltz Reg1,Label
blez Reg1,Label
bgtz Reg1,Label
bgez Reg1,Label

Sometimes the programmer will evaluate a conditional expression and want the
result in the form of a boolean value, not in the form of branching. There are
specialized Blitz-64 instructions which make that sort of operation easy:	

	 KPL Examples:	
	 	 boolVar = (i >= j)	
	 	 return i<j	

	 Relevant Assembly Instructions:	
testeq RegD,Reg1,Reg2
testne RegD,Reg1,Reg2
testlt RegD,Reg1,Reg2
testle RegD,Reg1,Reg2
testgt RegD,Reg1,Reg2
testge RegD,Reg1,Reg2

According to the semantics of KPL, all subexpressions in a larger expression must be
evaluated in the order in which they appear in the source. The following are not
equivalent, and the code must perform the function invocation in the order given.	

	 if (foo(…) && bar(…)) …	
	 if (bar(…) && foo(…)) …	

With the short-circuit AND operator (&&), whenever the first operand is evaluated
and found to be FALSE, the second operand need not be evaluated, since the result
will be FALSE regardless. The KPL language specifies that the second operand must
definitely not be evaluated whenever the first is FALSE.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	148 284

Chapter 8: Assembler Programming Conventions	

Likewise, with the short-circuit OR operator (||), whenever the first operand is
evaluated and found to be TRUE, the second operand need not be evaluated, since
the result will be TRUE regardless. The KPL language specifies that the second
operand must definitely not be evaluated whenever the first is TRUE.	

With the use of short-circuit operators, the evaluation of conditional expressions
becomes more complex, as the next example illustrates.	

	 KPL:	

	 	 if ((i < j) && (i == k)) || ((k < m) && (i == m))	
 	 	 	 i = 23	
	 	 else	
	 	 	 i = j + 45	
	 	 endIf	

	 Assembly translation:	

Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4

bge r1,r2,_label_65
beq r1,r3,_label_66

_label_65:
bge r3,r4,_label_67
bne r1,r4,_label_67

THEN STMTS...
_label_66:

movi r1,23
jump _label_68

ELSE STMTS...
_label_67:

addi r1,r2,45

ENDIF...
_label_68:

In the above example, the full benefit of the short-circuit operators is not
demonstrated, since the operands are all simple variables that are read-only. But
keep in mind that the programmer could substitute function invocations for each

Blitz-64: Assembler and Linker / Porter	 	 Page of 	149 284

Chapter 8: Assembler Programming Conventions	

operand, thus involving arbitrary computation. Thus, short-circuit behavior is
required from && and ||.	

The translation of a “while loop” follows this general form:	

	 KPL:	

while (…conditional…)	
…statements…

endWhile

	 Translation Idea:	

goto Continue_label
Loop_label:

 …statements…
Continue_label:

 if (…conditional…) goto Loop_label
Exit_label:

For example:	

	 KPL:	

while (i < j)	
…BodyStatements…

endWhile

	 Assembly translation:	

goto _label_35 # goto Continue_label
_Label_34:

…BodyStatements…
_Label_35:

blt r1,r2,_label_34 # If i<j goto Loop_Label
_Label_36:

A loop containing a “break statement” will cause a jump to the “Exit_label”. A loop
containing a “continue statement” statement will cause a jump to the
“Continue_label”. For example:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	150 284

Chapter 8: Assembler Programming Conventions	

	 KPL:	

while (…Conditional…)
…	

	 	 	 break
…	

	 	 	 continue
…	

endWhile

	 Translation Idea:	

goto Continue_label
Loop_label:

…
jump Exit_label # Break
…
jump Continue_label # Continue
…

Continue_label:
if (…conditional…) goto Loop_label

Exit_label:

KPL contains a “do-until” statement, which is similar to a “do-while” or “repeat-
until" statement. The translation follows this general form:	

	 KPL:	

do	
…statements…

until (…conditional…)

	 Translation Idea:	

Loop_label:
 …statements…

Continue_label:
 if !(…conditional…) goto Loop_label

Exit_label:

Here is an example of a “do-until” statement containing a short-circuit operator in
the condition:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	151 284

Chapter 8: Assembler Programming Conventions	

	 KPL:	

do	
…BodyStatements…

until (i < j) && (k == m)

	 Assembly translation:	

_Label_34:
…BodyStatements…

_Label_35:
bge r1,r2,_label_36 # If i>=j goto Loop_Label
bne r3,r4,_label_34 # If k!=m goto Loop_Label

_Label_36:

The translation of a “for loop” follows this general form:	

	 KPL:	

for (…InitializationStmts… ; …Conditional… ; …IncrementStatements…)
…	

	 	 	 break	
…	

	 	 	 continue	
…	

	 	 endWhile	

	 Translation Idea:	

…InitializationStmts…
goto Check_label

Loop_label:
 …

jump Exit_label # Break
 …

jump Continue_label # Continue
 …
Continue_label:
 …IncrementStatements…	
Check_Label:
 if (…Conditional…) goto Loop_label
Exit_label:

Blitz-64: Assembler and Linker / Porter	 	 Page of 	152 284

Chapter 8: Assembler Programming Conventions	

There are several ways to translate a “switch statement”. The simplest translation
involves performing a series of tests.	

	 KPL:	

switch (…TestExpr…)
…	

	 	 	 case (…ExprN…):	
…StatementsForCaseN…	

…	
	 	 	 default:	

…DefaultStatements…	
	 	 endSwitch	

	 Translation Idea:	

…Evaluate TestExpr…	
	 	 	 	

…Evaluate Expr1…
 if (TestExpr != Expr1) goto Case_1

…Evaluate Expr2…
 if (TestExpr != Expr2) goto Case_2

…Evaluate Expr3
 if (TestExpr != Expr3) goto Case_3

…Evaluate Expr4
 if (TestExpr != Expr4) goto Case_4

jump Case_Default

Case_1:
…StatementsForCase1…	

Case_2:
…StatementsForCase2…	

Case_3:
…StatementsForCase3…	

Case_4:
…StatementsForCase4…	

Case_Default:
…DefaultStatements…	

Exit_label:

Blitz-64: Assembler and Linker / Porter	 	 Page of 	153 284

Chapter 8: Assembler Programming Conventions	

Any “break” statement within any of the code blocks is just translated into a JUMP to
“Exit_label”. Any code block not ending with a “break” will simply fall through to the
next code block.	

As you can see, a translation based on this scheme will execute the switch by testing
each possible value in turn. Of course, whenever there are more than just a couple of
cases, this will result in poor performance. There are better translation schemes for
the switch statement. 	

The decision about which translation scheme is best to use can depend on the
number of cases and other factors. If the various case values all happen to fall with a
small range of integer values, a superior translation approach is to create a “jump
table” of indirect pointers. The code will first compute the value of “TestExpr” and
then use that value as an index into the jump table. Then the code will branch
directly to the correct statement block. For switch statements with hundreds of
cases, this approach to translation is clearly superior. We will not discuss this
translation technique any further here, although it is the key to making switch
statements work well.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	154 284

Chapter 9: Format of Object Files	

Quick Summary	

•	Object files use the extension “.o”.	
•	Running the assembler tool will produce an object file.	
•	The linker tool takes one or more object files as input.	
•	Running the linker tool will produce an executable file.	
•	Each object file contains the following:	
	 	 — Information about each segment	
	 	 — The data bytes of each segment	
	 	 — Information about each symbol	
	 	 — Information about each patch	
	 	 — Info to support the runtime debugging (optional)	
•	A “patch” is a relocation entry, telling how to modify the bytes in an instruction.	
•	The assembler creates a patch entry for every instruction it cannot complete.	
•	Each synthetic instruction will result in a single patch.	
	 	 — The assembler will fully translate some synthetic instructions,	
	 	 	 in which case no patch is necessary.	
•	The linker has more information available to it than the assembler.	
•	The linker will first place the segments in memory.	
•	Once placed, the value of every symbol will become known.	
•	The linker will process each patch, updating the bytes in memory.	
•	The linker will complete by creating an executable file.	

Terminology and Files	

This chapter describes the format of the object file. The object file generally ends
with a “.o” extension. The format of the executable file is described in a different
chapter.	

Blitz-64: Assembler and Linker / Porter	 Page of 155 284

Chapter 9: Format of Object Files	

For example, an assembly source file named “simple.s” would typically be used to
produce an object file named:	

	 simple.o	

The object file is used as input to the Blitz-64 linker, which produces an “executable
file”. The linker will take one or more object files, and will produce a single
executable file.	

The executable file is often call the “a.out” file, although it is generally given a more
meaningful name. Often the name of the executable file is the same as one of the
original source files, after removing the “.o”. For example:	

	 simple	

An extension is optional, but if present, .exe is recommended. For example, the
output file might be given this named instead:	

	 simple.exe	

At some later time, the executable file will be loaded by an operating system and
executed. Therefore, it must contain all that is necessary for executing the program.	

The Blitz-64 assembler tool is called “asm” and the linker tool is called “link”.
Another Blitz-64 tool, called “dumpobj”, can be used to print out, in a human
readable form, either object or executable files.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	156 284

Chapter 9: Format of Object Files	

The Object File	

The object file has the following format. The file can be considered as series of fields.
The length of each field is given in the left-hand column.	

bytes	 field description	

The following fields constitute the header information... 	
	 8	 Magic number "B64objct" (in hex: 0x4236_346F_626A_6374)	
	 8	 Version Number (0x0000_0000_0000_0001)	
	 2	 Blitz-64 ISA Architecture (e.g., 0x0002)	
	 4	 Number of segments	
	 4	 Number of symbols (0 … 2,147,483,647)	
	 4	 Source file name: number of characters (M); 0=source came from stdin	
	 M	 Source file name: the ASCII characters (no terminating \0)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every segment... 	
	 4	 Segment number (1, 2, 3, …)	
	 4	 Source file line number	
	 8	 Length of segment in bytes (possibly zero)	
	 1	 Is Kernel (0=user, 1=kernel)	
	 1	 Is Executable (0=not executable, 1=executable)	
	 1	 Is Writable (0=read-only, 1=read and write)	
	 1	 Is Zero-filled (0=normal, 1=all data is zero)	
	 8	 Starting address from “startaddr=” (-1 = floating)	
	 8	 Assumed value of “gp” from “gp=” (-1 = undefined, -2=default)	

After all segments...	
	 4	 Zero to terminate (in hex: 0x00000000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	157 284

Chapter 9: Format of Object Files	

The following fields are repeated once for every symbol... 	
	 4	 Symbol_number (1, 2, 3, ...)	
	 4	 Source file line number	
	 1	 Type:	
	 	 	 1 = imported	
	 	 	 2 = label	
	 	 	 3 = equate (definition appeared in .equ)	

	 If type = 1 (imported)…	

	 If type = 2 (label)…	
	 	 4	 Segment number in which symbol was defined	
	 	 8	 Offset into segment (where label occurred)	
	 	 1	 Was this symbol exported (0 = local only, 1 = exported)	

	 If type = 3 (equate)…	
	 	 4	 RelativeTo symbol number (0 = offset is an absolute value)	
	 	 8	 Offset (from relativeTo symbol, or value if absolute)	
	 	 1	 Was this symbol exported (0 = local only, 1 = exported)	

	 4	 Symbol name: number of characters (L)	
	 L	 Symbol name: the ASCII characters (no terminating \0)	

After all symbols...	
	 4	 Zero to terminate (in hex: 0x00000000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every patch... 	
	 1	 The patch type (1, 2, …)	
	 4	 Source file line number	
	 4	 The segment where the patch must be made	
	 8	 The location to be patched (i.e., offset into the segment)	

	 4	 The target symbol (0 = absolute)	
	 8	 Offset from target symbol (often zero)	
	 	 	 For patch type = “align”, offset will be 8, 16, 32, or 16384	

	 1	 Exact size of result in bytes (4, 8, 12, 16) or -1 if don’t care	
	 	 	 Used for Formats S1,S2,…S7. For ALIGN this will be -1.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	158 284

Chapter 9: Format of Object Files	

After all patch entries...	
	 1	 Zero to terminate (in hex: 0x00)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every segment... 	
	 4	 Segment number	
	 N	 The data bytes, where N is the size of the segment in bytes	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields concern debugger information… 	
	 4	 Package name: number of bytes (M); 0 = No debugger info present	
	 M	 Package name: the UTF-8 encoded characters (with terminating \0)	
	 4	 The second string: number of bytes (N)	
	 N	 The second string: the UTF-8 encoded characters (with terminating \0)	
	 4	 The number of globals; 0 = none present / missing info	
	 4	 The number of functions; 0 = none present / missing info	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every global…	
	 4	 Global name: number of bytes (M); will be > 0	
	 M	 Global name: the UTF-8 encoded characters (with terminating \0)	
	 4	 Source file line number	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Location: The segment number	
	 8	 Location: Offset into segment	

After all global entries...	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every function…	
	 4	 Function name: number of bytes (M); will be > 0	
	 M	 Function name: the UTF-8 encoded characters (with terminating \0)	
	 4	 Source file line number	
	 4	 Location: The segment number	
	 8	 Starting Location: Offset into segment	
	 8	 Beyond Location: Offset into segment (i.e., address of last byte + 1)	
	 4	 Frame size (not negative; 0 = leaf function)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	159 284

Chapter 9: Format of Object Files	

The following fields are repeated once for every register parameter…	
	 4	 Source file line number (>= 0)	
	 1	 Register number (1 … 15)	
	 4	 Parameter name: number of characters (M); will be > 0	
	 M	 Parameter name: the UTF-8 encoded chars (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

After all register parameters…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every local variable…	
	 4	 Source file line number (>= 0)	
	 4	 Offset from stack top	
	 4	 Variable name: number of bytes (M); will be > 0	
	 M	 Variable name: the UTF-8 encoded chars (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

After all local variables…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every statement…	
	 4	 Source file line number (>= 0)	
	 4	 Location of code: Segment number	
	 4	 Location of code: Offset into segment	
	 1	 Type Code (0=comment, 1=assign, …)	
If and only if type code = comment, the following will be present…	

	 4	 Comment String: number of bytes (M); will be > 0	
	 M	 Comment String: the UTF-8 encoded chars (with terminating \0)	

After all local statements…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all function entries...	
	 4	 Zero to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	160 284

Chapter 9: Format of Object Files	

Integers	

All integers in the file are stored as signed binary values in Big Endian order, i.e., the
most significant byte will appear first.	

Integers of the following sizes are used:	

	 number	 number	
 	 of bytes	 of bits	 	
	 byte	 1	 8	
	 word	 4	 32	
	 doubleword	 8	 64	

Magic Number	

The first eight bytes of the object file serve to identify it as a Blitz-64 object file.
These bytes are the ASCII character codes for the letters “B64objct” (for Blitz-64
Object), namely the value 0x4236_346F_626A_6374.	

The magic number idea is not a foolproof way to identify files. Although highly
unlikely to occur by chance, there may happen to be other files that happen to begin
with these same eight bytes. Although this techniques is by no mean secure, it is a
good way for the linker to check that it is being given a meaningful file. Also, it allows
a human looking at the file to guess what sort of data it contains. Although much of
the file will contain bytes that are not interpretable as text data, the eight bytes of
the magic number are human-readable, so they should give the reader a clue about
the file’s nature.	

This technique is also used in other files:	

	 Magic Number	 ASCII Interpretation	
	 object file	 0x4236_346F_626A_6374 	 “B64objct”	
	 executable file	 0x4236_3461_2e6f_7574 	 “B64a.out”	
	 object library file	 0x4236_346F_5F6C_6962 	 “B64o_lib”	
	 load-and-go file 	 0x4236_346C_642B_676F 	 “B64ld+go”	10

 The load-and-go format is no obsolete. The assembler can no longer produce this type of file.10

Blitz-64: Assembler and Linker / Porter	 	 Page of 	161 284

Chapter 9: Format of Object Files	

The Version Number and ISA Architecture Fields	

Following the magic number is a “version number”. We understand that future
changes may be required to the format of object files. This field exists to
accommodate changes, updates, and extensions to this file format.	

This document describes “version 1” of the file format. All files conforming to this
specification will have the value 1 in this field. Any other value indicates that the
remainder of the file will conform to a different specification.	

At this time, there is only one version of this file format and the assembler and linker
are is only capable of dealing with “version 1” files. Future versions may be capable
of handling different versions.	

Details about future version and compatibility between the tools must be
documented in the future, obviously.	

The “ISA Architecture” field specifies which type of machine this code is intended to
be run on. This value must match the value from the version number in bits [30:16]
of the CSR register csr_version. In other words, the numbers used in this field and
the in csr_version are drawn from the same set and therefore have the same values
and meanings.	

At this time, the current version Blitz-64 Instruction Set Architecture (ISA) is	

	 0x0002	

In the future, changes and/or additions to the machine code instructions are likely.
For example, we plan to specify and implement the compressed instruction set in
the future. When changes are made to the ISA , the csr_version will be changed
(incremented) to reflect a modified architecture.	

Commentary We separate out the “file version number” and the “ISA architecture
version” into two fields because these really track two different kinds of changes
that can be made in the future. A change to the machine architecture may not
require a change to the file format. Conversely, a change to the file format may be
implemented even though there is no change to the ISA.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	162 284

Chapter 9: Format of Object Files	

Separators (********)	

As an internal consistency check, there will be 8 bytes of “separator” data placed at
the indicated points in the file. These eight bytes are the ASCII character codes for
the characters “********”. That is, the separator doubleword is
0x2A2A_2A2A_2A2A_2A2A.	

If there is some inconsistency between the text or data segment sizes and the actual
number of bytes provided, then these separators may help to catch the error. The
linker will check that the separator characters appear correctly at the places in the
object file where they are supposed to appear, and print error messages if not.	

Segment Information	

Each segment in the object file is given a sequential number, starting with 1.	

[Typically we expect the number of segments to be under 10. There will be at least
one segment in the file and it is likely that other constraints will prevent the upper
limit of 2,147,483,647 segments ever being reached.]	

Each segment corresponds to a single .begin instruction in the source file.	

A segment represents a block of bytes containing instructions and/or data. The
segment will be loaded into memory by the operating system at the time the
program is to be executed.	

The block of bytes will appear in the object file and the linker will copy the block to
the executable file. However, if the segment is marked “zero-filled”, the block of
bytes (which will all be 0x00) will not be stored in the object file or in the executable
file. At execution time, the operating system will initialize the bytes of the segment
to zeros, as it allocates memory pages for the process.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	163 284

Chapter 9: Format of Object Files	

The linker will determine where in memory to place each segment. The following
pieces of data will be used by the linker to determine where to place the segment:	

	 • Length of segment in bytes	
	 • Starting address from “startaddr=”	
	 • Is Kernel (0=user, 1=kernel)	
	 • Is Executable (0=not executable, 1=executable)	
	 • Is Writable (0=read-only, 1=read and write)	
	 • Is Zero-filled (0=normal, 1=all data is zero)	

The length of the segment is given in bytes and may even be zero, although why a
programmer would create such a segment is hard to imagine.	

The .begin instruction may include the “startaddr=” parameter. If so, the
programmer has specified exactly where in memory to place the segment.	

If the startaddr= parameter is undefined, the linker will rely the “Is Kernel” value.
Kernel segments will be placed in low memory, as near to address 0x0_0000_0000
as possible. User segments will be placed in the virtual address region, which begins
at address 0x8_0000_0000.	

The linker will begin by placing the segments with predetermined addresses at their
locations. Then the linker will place floating segments (i.e., segments without a
startaddr= parameter) in the remaining area. (The placement algorithm is
described elsewhere in this document.)	

The linker is aware of pages and the fact that each page will either be marked
“writable” or not, and that each page will either be marked “executable” or not.	

The following kinds of pages are possible. The linker will determine how many
pages are required at runtime and will only place like segments in any page.	

	 	 writable	 executable	
	 read-only	 no	 no	
	 read-write	 yes	 no	
	 code-only	 no	 yes	
	 code-and-data	 yes	 yes	

Each segment will also have a “gp=” parameter. This parameter will have as its value
a 36 bit address (0x0 … 0x0000_000F_FFFF_FFFF). This parameter may also be
“undefined”, in which case the object file will contain the value -1

Blitz-64: Assembler and Linker / Porter	 	 Page of 	164 284

Chapter 9: Format of Object Files	

(0xFFFF_FFFF_FFFF_FFFF). This parameter may also be “default”, in which case the
object file will contain the value -2 (0xFFFF_FFFF_FFFF_FFFE).	

The gp= parameter will be used by the linker when processing the patches. For
example, one patch might indicate that a segment contains the following synthetic
instruction:	

loadb r5,MySymbol

where “MySymbol” was imported. Since the value of the symbol will not be known
until link time, the linker will be tasked with translating this synthetic instruction
into one or more machine instructions.	

Assuming that register “gp” contains a value such as 0x8_0000_8000 (which is
typical for user programs) and that “mySymbol” has a value such as 0x8_0000_8123,
the linker can replace the synthetic instruction with this machine instruction:	

load.b r5,0x123(gp)

However, if register gp happens to be undefined or has some other value, the linker
will be required to use a different instruction.	

After the symbol information in the object file, the segment data will actually appear.	

The segments will be given in order. In other words, the data for segment #1 will
come first, followed by the data for segment #2, and so on.	

For zero-filled segments, there will be not be an entry with zero bytes; the entry will
simply be missing.	

The segment length is not constrained to be a multiple of anything and may be zero.	

Symbols in the Object File	

A single executable program may originate from several source files. Each source file
will be assembled into an object file. These object files will then be combined in the
linking phase to produce a single executable file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	165 284

Chapter 9: Format of Object Files	

The program is composed of several object files and each object file corresponds to a
single source file. The linking process then combines the object files to produce the
executable file.	

Code in one object file may refer to addresses, instructions, data, and values defined
in other object files. As an example, object file A may define a function called “printf”
and object file B may call this function. When object file B is assembled, there is no
information about where the “printf” function will be located or even what object
file it will be in. As the linker processes all object files, it will modify the “call”
instruction to fill in the final address of the “printf” function, in a process we call
“patching”. (Traditionally, this has also been called “relocation”.)	

Symbols are used to share such things as the address of the “printf” function across
object file boundaries. Object file A would export the symbol “printf” and object file
B would import “printf”.	

Ultimately each symbol must be assigned a value which will be a 64 bit signed
integer. The linker will determine that value and will issue an error if it cannot
determine the value of some symbol.	

The value of each symbol will be either (1) the address of a location in some
segment or (2) an absolute value, which is not the address of any location.	

Since addresses are not determined until link time, any symbol which originates as a
label (or an .equ to a label) will not have an actual value until link-time. Some
symbols may have an absolute value known in the object file where it is defined, but
this value will be unknown in any object file that imports the symbol.	

The Symbol List	

The next section of the object file consists of a number of symbols. For example, an
object file may contain 100 symbols. Each of the 100 symbols is represented in the
object file with a “symbol entry”, which will have information such as “symbol
number”, “type”, “relative to”, and the characters of the symbol’s name.	

The symbols within each object file are sequentially numbered, starting with 1.
These numbers are local to only that object file. The numbers are used in:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	166 284

Chapter 9: Format of Object Files	

	 • The definition of other symbols	
	 	 A symbol can be given a value of “OtherSymbol + offset”	
	 • The patch entries	
	 	 A synthetic instruction may use a symbol as its argument.	

Each symbol has a name, which is a character string, and the symbol entry contains
the string. The symbol name is used to match an exported symbol from one file with
an imported symbol in another file. For this matching, symbol names are case-
sensitive and must match exactly. The string is specified using length in bytes. No
terminating character (\0 or \n) is used. ASCII encoding is used; only ASCII
characters are allowed in symbols.	

Each symbol in an object file has a type code, which indicates how that symbol was
defined:	

	 1 = imported	
	 2 = label	
	 3 = equate	

If a symbol is “imported”, then the object file contained no definitions that symbol.
Instead, the symbol is assumed to be exported by some other file. The linker must
locate the definition (by matching the characters in the symbol name) and must tie
the uses of the symbol in this object file to the definition in the other object file.	

For a symbol of type “label”, the symbol was defined by labeling an address in this
object file. The definition consists of the segment that contained the label and the
offset into that segment of the byte location that had the label.	

Note that the linker will translate synthetic instructions into machine instructions.
When translating a synthetic instruction which requires more than one machine
instruction, the linker may be required to insert additional bytes into the middle of
some segment. Whenever the linker inserts such additional bytes, it will update and
shift the definition of all labels in that segment following the insertion.	

The other way in which a symbol can be defined is with a .equ equate instruction. A
symbol can either be equated to an absolute value that was known to the assembler
or to some other symbol.	

For any symbol given an absolute value (which will be a 64 bit signed integer), the
symbol entry in the object file will be marked “equate” and will use the special value

Blitz-64: Assembler and Linker / Porter	 	 Page of 	167 284

Chapter 9: Format of Object Files	

of zero for the “relativeTo” field and the “offset” field will contain the actual value.
(Perhaps an absolute value should be thought of as an offset from zero.)	

For any symbol that is given a value in a .equ equate instruction where the value is
not an absolute value known to the assembler, the definition will be of the form:	

Symbol: .equ OtherSymbol + IntegerOffset

The definition may not have that exact form, but it will be reduced to that. For
example:	

Sym43: .equ (-0x123 <<4) + Lab_98

The OtherSymbol may be defined in the current object file or may be an imported
symbol. If it is defined in this file, then it will be a “label” type symbol. (If
OtherSymbol had been an absolute value, then the assembler would have evaluated
the expression, determined the value, and made this symbol an absolute value, not a
“relative to” symbol.)	

Regardless of how the symbol was defined (either as a label or in an equate), the
symbol may or may not have been exported. Another field in the symbol entry will
indicate whether or not the symbol is exported.	

If a symbol is exported, then the linker will link it with any identically spelled
symbol that is imported in another object file.	

All exported symbols from all object files must be unique. It is an error for the same
symbol to be exported from more that one object file. The linker will catch and
report this error.	

Symbols that are not exported are considered to be “local” to a single object file.
Different object files may use identically spelled symbol names for different
purposes; such symbols are completely unrelated and will have totally different
definitions.	

The purpose for including local symbols in the object file is that they can provide
useful information to a debugger. Local symbols will be included in the executable
file, but only for the purpose of debugging. They will not impact execution in any
way.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	168 284

Chapter 9: Format of Object Files	

For example, it is common for the programmer to create many local labels as targets
for BRANCH, JUMP, and CALL instructions. It is very helpful when disassembling
instructions in a debugger to be able to show the local labels to help the
programmer get oriented and make sense of the disassembled instructions. As
another example, unusual constants may be equated to local symbol names;
displaying these symbolic names during debugging may make dissembled code
easier to interpret.	

The symbols are given in numerical order in the object file. After the last symbol, the
list will be followed with a zero and a “********” separator. These will signal the end
of the list.	

Patch Entries	

Next in the file will be a list of patch entries, each describing a patch that must be
made by the linker.	

Each patch entry will begin with a “type” code. The list of patch entries will be
followed by a zero and a “********” separator. These will signal the end of the list.	

Each path entry has this form (repeated from above):	

The following fields are repeated once for every patch... 	

	 1	 The patch type (1, 2, …)	
	 4	 Source file line number	
	 4	 The segment where the patch must be made	
	 8	 The location to be patched (i.e., offset into the segment)	

	 4	 The target symbol (0 = absolute)	
	 8	 Offset from target symbol (often zero)	
	 	 	 For patch type = “align”, offset will be 8, 16, 32, or 16384	

	 1	 Exact size of result in bytes (4, 8, 12, 16) or -1 if don’t care	
	 	 	 Only for Format S1,S2,…S7.	

The “patch type” tells which synthetic instruction appeared in the source file, so the
linker can know what instructions to generate.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	169 284

Chapter 9: Format of Object Files	

The .byte, .halfword, .word, and .doubleword pseudo-ops can have as an operand
an expression which has a value that cannot be determined until link time. There are
4 patch types, one for each of these.	

The .align pseudo-op may also require linker attention and there is a special patch
type for it, as well.	

The “source line number” is used in error messages printed by the linker, but not
otherwise used, with one interesting exception. Consider the following assembly
code:	

label:
 .align 16

The assembler will insert zero bytes for the .align pseudo-op, leaving the task to the
linker. Thus, the label and the align will both be located at the same offset in the
segment. As far as the object file goes, this code is indistinguishable from the
following:	

 .align 16
label:

But what happens if the linker is required to insert several bytes for the .align
pseudo-op? These cases must be handled differently! In the first case, the label must
be associated with the first padding byte; in the second case, the label must be
associated with the first byte after the padding.	

The line number on the symbol and the line number on the patch are used by the
linker to distinguish these cases.	

The “segment number” and “location to be patched” give the location that must be
modified. The linker is required to change and/or insert bytes at that location.	

For synthetic instructions that must be patched, there is always an “address” or
“value” that could not be determined by the assembler. There are two cases:	

	 An absolute number	
	 	 The “target symbol” will be zero and “offset” will contain the value	
	 A symbolic address	
	 	 The “target symbol” will indicate which symbol was used.	
	 	 There may be an optional “offset” from the target symbol.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	170 284

Chapter 9: Format of Object Files	

Once the linker determines the final address of the target symbol, the linker will add
in the “offset”, which is often zero. Then the linker can determine exactly which
machine instructions are required and can modify the segment accordingly.	

For synthetic instructions, the linker will be replacing the synthetic instruction by 1,
2, 3, or 4 machine instructions. Generally speaking, the assembler will either be
unable to determine what the linker will do or will not care. In such cases, the “exact
size” field will be -1 (i.e. “don’t care”).	

However, in some cases, the size of the translation was important during assembly.
The “exact size” field gives information about how many bytes the assembler has
concluded will be needed for the translation.	

Even though the assembler may have been able to determine that some instruction
could be translated by a given number of bytes, it may have been unable to perform
the actual translation. This might have occurred because the assembler was unable
to know exactly what the linker would do for some other instructions somewhere
else. However, the assembler may have depended on the translation for the
instruction being some exact size. This size expectation is captured in the “exact
size” field. The linker must ensure that its translation is the size expected by the
assembler, but this will never be a problem since the assembler will only make such
assumptions when it knows the linker can meet its size expectations.	

For the BYTE, HALFWORD, WORD, and DOUBLEWORD patches, the exact size field
will be 1, 2, 4, and 8, respectively.	

In the case of ALIGN patches, all fields are present:	

	 target symbol — ignored (will be 0)	
	 offset — will be 8, 16, 32, or 16384	
	 exact size — ignored (will be -1)	

How many bytes will be present in the file?	

For synthetic instructions (i.e., S-1 through S-7), if the exactSize field is 4, 8, 12, or
16, then the object file will contain exactly that number of bytes. It the exactSize field
is -1 (don’t care), then the file will contain exactly 4 bytes.	

If registers were used in the synthetic instruction, the first 4 bytes will contain the
register identities in their proper places. To be more precise, when expressed in hex,

Blitz-64: Assembler and Linker / Porter	 	 Page of 	171 284

Chapter 9: Format of Object Files	

the first word will have the following format, where 3, 2, 1, and D symbolically
represent the bit fields for encoding registers Reg3, Reg2, Reg1, and RegD,
respectively.	

	 0000321D	

Since each register is encoded with 4 bits, the first word will have this format,
expressed in binary:	

	 0000 0000 0000 0000 3333 2222 1111 DDDD	

For the BYTE, HALFWORD, WORD, and DOUBLEWORD patches, the object file will
contain 1, 2, 4, and 8 bytes, respectively.	

For all ALIGN patches, the object file will contain 0 bytes.	

The Patch Types	

There are 25 patch types, numbered 1 … 25:	

Format S-1:	
	 Patch Type 1	
	 	 MOVI (regD ≠ gp)	
	 Patch Type 2	
	 	 MOVI (regD = gp)	

Format S-2:	
	 Patch Type 3	
	 	 BEQ Reg1,Reg2,Address	
	 Patch Type 4	
	 	 BNE Reg1,Reg2,Address	
	 Patch Type 5	
	 	 BLT Reg1,Reg2,Address	
	 Patch Type 6	
	 	 BLE Reg1,Reg2,Address	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	172 284

Chapter 9: Format of Object Files	

Format S-3:	
	 Patch Type 7	
	 	 JUMP Address	
	 Patch Type 8	
	 	 CALL Address	

Format S-4:	
	 Patch Type 9	
	 	 LOADB Regd,Address	
	 Patch Type 10	
	 	 LOADH Regd,Address	
	 Patch Type 11	
	 	 LOADW Regd,Address	
	 Patch Type 12	
	 	 LOADD Regd,Address	

Format S-5:	
	 Patch Type 13	
	 	 LOADB Regd,Offset(Reg1)	
	 Patch Type 14	
	 	 LOADH Regd,Offset(Reg1)	
	 Patch Type 15	
	 	 LOADW Regd,Offset(Reg1)	
	 Patch Type 16	
	 	 LOADD Regd,Offset(Reg1)	

Format S-6:	
	 Patch Type 17	
	 	 STOREB Address,Reg2	
	 Patch Type 18	
	 	 STOREH Address,Reg2	
	 Patch Type 19	
	 	 STOREW Address,Reg2	
	 Patch Type 20	
	 	 STORED Address,Reg2	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	173 284

Chapter 9: Format of Object Files	

Format S-7:	
	 Patch Type 21	
	 	 STOREB Offset(Reg1),Reg2	
	 Patch Type 22	
	 	 STOREH Offset(Reg1),Reg2	
	 Patch Type 23	
	 	 STOREW Offset(Reg1),Reg2	
	 Patch Type 24	
	 	 STORED Offset(Reg1),Reg2	

Align:	
	 Patch Type 25	
	 	 “offset” contains the alignment requirement	

Data:	
	 Patch Type 26	
	 	 BYTE — The linker will print an error if the value will not fit	
	 Patch Type 27	
	 	 HALFWORD — The linker will print an error if the value will not fit	
	 Patch Type 28	
	 	 WORD — The linker will print an error if the value will not fit	
	 Patch Type 29	
	 	 DOUBLEWORD	

Order of patches within an object file:	

Each patch applies to a location within a segment. The patches in an object file must
be in proper order, as discussed next:	

The patches for all segments must appear together. The segments must appear in
order. For example, all patches for segment #1 must be placed before the patches
for segment #2.	

Furthermore, all patches for a given segment must be in order by the location to be
patched. For example, a patch to offset 0x40 in segment #2, must come before a
patch to offset 0x44 in that segment.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	174 284

Chapter 9: Format of Object Files	

The following patch types are not used:	

All instructions of format B, C, and D instructions require an immediate value as an
operand. The assembler requires such an immediate value to be knowable by the
assembler from the information in the assembly source file. Thus, for these
instructions, the assembler will produce the final machine code and the linker will
never need to modify them.	

Therefore, the following patch types are not required, not used, and not
implemented.	

Format B:	
	 Patch Type XXX	
	 	 immed-16 — Errors would occur if the value will not fit	

Format C:	
	 Patch Type XXX	
	 	 immed-16 — Errors would occur if the value will not fit	

Format D:	
	 Patch Type XXX	
	 	 immed-20 — Errors would occur if the value will not fit	
	 	 Normally UPPER20/AUIPC/JAL/ADDPC	
	 	 	 are the result of synthetic instruction translation.	

Debugging Information - Header Info	

The segments, the symbols, and the patches are not optional. Every .o object file will
contain that information.	

But after these, the file might or might not contain additional information to support
the runtime debugger, which we describe next.	

The debugging information is optional. If the -nodebug option was specified on the
assembler command line, then no debugging information will be added to the object
file. Also, if the file contained no debugging pseudo-ops, then no debugging
information will added to the object file. Otherwise, the information will be included
at the end of the file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	175 284

Chapter 9: Format of Object Files	

The debugging information begins with a header block of data. If debugging
information is not included in the file, the the header information will contain the
following values to signal this and the object file will include nothing further.	

Field	 Value	
Package name, number of bytes	 0	
Package name string	 < no bytes >	
The second string, number of bytes	 0	
The second string	 < no bytes >	
The number of globals	 0	
The number of functions	 0	
Separator (“********”)	 0x2A2A_2A2A_2A2A_2A2A	

Otherwise, the package name and the second string (which come from
the .sourcefile pseudo-op will be present. These are null-terminated UTF-8 strings,
and their sizes (in bytes, including the \0) are also given.	

Since both strings will contain at least the \0 character, their lengths will be greater
than 0. The empty header can be differentiated by the first field, i.e., the number of
bytes in the package name string.	

Following the debugging header block there will be a number of globals and a
number of functions.	

Debugging Information - Global Blocks	

For each appearance of a .global pseudo-op in the source file, there will be a single
block of information. Each block will include these fields:	

bytes	 field description	
	 4	 Global name: number of bytes (M); will be > 0	
	 M	 Global name: the UTF-8 encoded string (with terminating \0)	
	 4	 Source file line number	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Location: The segment number	
	 8	 Location: Offset into segment	

The name of the variable (as given in the .global pseudo-op) is a null-terminated
UTF-8 string; its size (in bytes, including the \0) is also given. This is followed by the

Blitz-64: Assembler and Linker / Porter	 	 Page of 	176 284

Chapter 9: Format of Object Files	

source code line number, as given in the .global following “line=”. (This is
presumably the line number from a KPL source code file and not the line number in
the .s file.).	

The type of the variable is indicated by a single character. This simple typing scheme
doesn’t match the richness of KPL’s type system, but is enough to support debugging
at the machine code level.	

The .global pseudo-op should be placed in the .s file directly before the variable to
which it applies. For example:	

.global "myVar", line = 60, type = "I"
P_MyPack_myVar_43:

.doubleword 0

The name in the .global is what the KPL programmer used; the label in the .s file is
the (presumably mangled) name generated by the compiler.	

The address of the next thing following the .global will be associated with this
debugging information. The “location” fields in the global data block give the
segment and offset at which that thing will be located. During the linking step, the
linker will place the segments in memory, and will determine the actual address at
that time. The debugger will use this information to know that an integer (a signed
64-bit value) with name “myVar” (defined on source code line 60) is stored at the
address.	

The assembler and linker do not check whether the .global is placed before the
correct instruction and do not check whether the type code is correct. For example,
the assembler and linker will accept the following with no complaint. Obviously, the
location will contain a couple of machine code instructions, not a pointer (P). This
will trick the debugger, which will display “myVar” as a pointer, interpreting the
machine code bits for these instructions as an address. (Since this would confuse
anyone using the debugger, the compiler will only place a .global pseudo-op directly
before the data bytes to which it applies.)	

.global "myVar", line = 60, type = "P"
add r1,r2,r3
xori r3,r4,567

Blitz-64: Assembler and Linker / Porter	 	 Page of 	177 284

Chapter 9: Format of Object Files	

Type Codes Used for Debugging	

Here are the single character codes used. The type code will be a single character.
Compound types (such as “PI” for “ptr to int”) are not supported.	

	 I	 int	 64-bit signed integer	
	 W	 word	 32 bit signed integer	
	 H	 halfword	 16 bit signed integer	
	 C	 byte (C = Char)	 8 bit signed integer or ASCII char	
	 L	 bool (L = Logical)	 TRUE / FALSE, 8 bits	
	 D	 double	 64 bit double-precision floating point	
	 S	 String	 Array of bytes; UTF-8 encoded	
	 P	 ptr	 Pointer, 64 bits	
	 A	 array	 	
	 O	 object	 	
	 R	 struct (R = Record)	 	
	 U	 union	 	
	 ?	 other / unknown /missing	

The same type code characters are used in .global, .regparm, and .local pseudo-ops.	

Debugging Information - Function Blocks	

For each appearance of a .function pseudo-op in the source file, there will be a
single block of information.	

The .function pseudo-op is used to give the debugger information about a function
or a method. The debugger treats methods and functions the same way. The receiver
(i.e., “self”) is always a pointer to an object and is always the first parameter, so it
will be in register r1. Otherwise, the code for methods and functions is identical.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	178 284

Chapter 9: Format of Object Files	

Each function block will include these fields:	

bytes	 field description	
	 4	 Function name: number of bytes (M); will be > 0	
	 M	 Function name: the UTF-8 encoded string (with terminating \0)	
	 4	 Source file line number	
	 4	 Location: The segment number	
	 8	 Starting Location: Offset into segment	
	 8	 Beyond Location: Offset into segment (i.e., address of last byte + 1)	
	 4	 Frame size (not negative; 0 = leaf function)	

Following each function block, will be zero or more “register parameter blocks” with
one for each .regparm pseudo-op appearing after the .function.	

Following the register parameter blocks, will be zero or more “local variable blocks”
with one for each .local pseudo-op appearing after the .function.	

Following the local variable blocks, will be zero or more “statement blocks” with one
for each .stmt / .comment pseudo-op appearing after the .function.	

The name of the function or method (as given in the .function pseudo-op) is a null-
terminated UTF-8 string; its size (in bytes, including the \0) is also given. This is
followed by the source code line number, as given in the .function pseudo-op
following “line=”. (This will be the line number from a KPL source code file and not
the line number in the .s file.).	

The function block tells where the function’s code begins and where it ends, as
determined by the placement of the .function and .endfunction pseudo-ops. These
are given by offsets into a segment and these locations will be turned into addresses
by the linker. The ending address is given as the location just past the end of the
function (i.e., the location of the next thing following the function).	

The framesize field gives the size of the stack frame in bytes and will always be a
positive multiple of 8. A zero value indicates that this block describes a leaf function.
The debugger needs this information in order to go down into the stack to retrieve
information from buried stack frames.	

Note that the framesize is the amount that register sp is adjusted whenever this
function is invoked. Leaf functions will often use elements above the stack top (i.e.,
with lower addresses), but they must not adjust register sp, or else the debugger
will become very confused. (This is because the debugger must be able to locate the

Blitz-64: Assembler and Linker / Porter	 	 Page of 	179 284

Chapter 9: Format of Object Files	

return address field in buried frames. From the return address, the debugger can
deduce which function was executing and, from that, the debugger can deduce the
frame sizes of buried frames, which it needs to know in order to work its way
further down the stack.)	

Debugging Information - Register Parameter Blocks	

For each appearance of a .regparm pseudo-op following a .function, there will be a
single block of “register parameter” information. Each block will include these fields:	

bytes	 field description	
	 4	 Source file line number (>= 0)	
	 1	 Register number (1 … 15)	
	 4	 Parameter name: number of bytes (M); will be > 0	
	 M	 Parameter name: the UTF-8 encoded string (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

The name of the parameter is a null-terminated UTF-8 string which comes from
the .regparm pseudo-op. Likewise, the source code line number comes from “line=”
the .regparm pseudo-op.	

The line number will never be negative. The line number field is listed first and a
value of -1 is used to terminate the list of register parameter blocks.	

The register number will normally be 1 … 7 since the standard calling conventions
use only registers r1 … r7 for passing parameters. The debugger may or may not be
able to cope with values 8 … 15.	

The type code character meanings were listed above.	

All the register parameter blocks for a given function will occur in the object file
directly after the function block and before the local variable blocks and statement
blocks, regardless of their order in the .s file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	180 284

Chapter 9: Format of Object Files	

Debugging Information - Local Variable Blocks	

For each appearance of a .local pseudo-op following a .function, there will be a
single block of “local variable” information. Each block will include these fields:	

bytes	 field description	
	 4	 Source file line number (>= 0)	
	 4	 Offset from stack top	
	 4	 Variable name: number of bytes (M); will be > 0	
	 M	 Variable name: the UTF-8 encoded string (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

The name of the local variable is a null-terminated UTF-8 string which comes from
the .local pseudo-op. Likewise, the source code line number comes from “line=” on
the .local pseudo-op.	

The line number will never be negative. The line number field is listed first and a
value of -1 is used to terminate the list of local variable blocks.	

The offset tells where in the stack frame the parameter or local variable will be
located. The offset is in bytes, relative to the stock top. A more positive offset is
buried deeper in the stack.	

For parameters passed on the stack, the data in memory will be valid at the time the
function is called. In other words, the calling conventions require that the argument
be placed in the stack at the given offset before the CALL instruction is executed.	

However, during the execution of any function (or method), parameters and local
variables will often be cached in registers. Even though the compiler has included
a .local pseudo-op to describe a parameter or a local variable, it is likely that the
value will be cached in a register for much of the execution of the function, and the
debugger will not know about this. Be aware of this.	

The type code character meanings were listed above.	

All the local variable blocks for a given function will occur in the object file directly
after the register parameter blocks and before the statement blocks, regardless of
their order in the .s file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	181 284

Chapter 9: Format of Object Files	

Debugging Information - Statement Blocks	

For each appearance of a .stmt pseudo-op following a .function, there will be a
single block of “statement” information. The .comment pseudo-op is handled as a
special case of the statement block. For each .comment there will be a single
statement block as described here. In other words, the following block of
information describes either a .stmt or .comment pseudo-op, as differentiated by
the typecode field.	

Each statement block will include these fields:	

bytes	 field description	
	 4	 Source file line number (>= 0)	
	 4	 Location: Segment number	
	 4	 Location: Offset into segment	
	 1	 Type Code (0=comment, 1=assign, …)	

If and only if type code = 0/comment, the following will be present…	
	 4	 Comment String: number of bytes (M); will be > 0	
	 M	 Comment String: the UTF-8 encoded string (with terminating \0)	

The source code line number comes from “line=” on the .stmt. There is no associated
line number for a .comment so this field will be 0 for .comment pseudo-ops. The
line number will never be negative. The line number field is listed first and a value of
-1 is used to terminate the list of statement blocks.	

The .stmt or .comment applies to the thing that follows it. The location given here
will be translated by the linker into an address.	

Furthermore, the statement blocks for a given function are guaranteed to be in order
by location. They will be in the same order they occurred in the .s file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	182 284

Chapter 9: Format of Object Files	

The type code are integer codes. For example:	

0 comment < from .comment pseudo-op >
1 assign ASSIGNMENT statement
2 if IF statement
3 then THEN statements
4 else ELSE statements
5 call CALL statement	
6 send SEND statement
7 while_expr WHILE LOOP (expr evaluation)	
8 while_body WHILE LOOP (body statements)	
9 do_body DO UNTIL (body statements)	

	 	 … etc… 	

All the statement blocks for a given function will occur in the object file directly after
the local variable blocks.	

If, and only if, the type code is 0, then this statement block of data describes
a .comment pseudo-op. For such a block, there will also be a string, which gives the
comment information. The comment is a null-terminated UTF-8 string.
The .comment does not have a “line=“ field; the value of the source code line
number will be 0.	

Future Work	

The fields of the .o object file are not properly aligned. This creates a potential
performance problem for the file I/O performed by the asm, link, and createlib
tools.	

Typically, files are implemented with memory-mapped I/O. File READ and WRITE
operations end up becoming nothing more than memory-to-memory data
movement. Thus, proper alignment may speed up file operations, at the cost of
increasing file size.	

Perhaps the file format needs to be redefined so that all fields are properly aligned.
This would require changes to the asm, link, createlib, and dumpobj tools.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	183 284

Chapter 9: Format of Object Files	

Segment sizes are not constrained to be a multiple of any number. We ought to add a
padding field (with 0 … 7 padding bytes) to follow the data for each segment, in
order to make sure that all subsequent segment data chunks are doubleword
aligned.	

The changes described here can be expected to have only a modest impact on the
performance of the asm, link, and createlib tools. We think “modest” because these
tools don’t spend much time performing I/O. The bulk of processing for these tools
is spent manipulating in-memory data structures.	

On the other hand, the .o object file format has been designed to minimize file size,
which also contributes to performance. Without empirical testing, it is not certain
that performance would be significantly improved by redesigning the object file
format.	

Therefore, these proposed changes will not be pursued.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	184 284

Chapter 10: Executable File Format	

Quick Summary	

• The linker produces an executable file.	
• The executable file is loaded by the OS kernel at runtime.	
• The format of the executable file is given, including:	
	 — Version and machine architecture identification	
	 — The number of pages, and addresses of the pages	
	 	 	 For each page, its “writable” and “executable” attributes are given.	
	 — A number of segments	
	 	 	 For each segment, the address, length, and data bytes are given.	
	 — The entry point, an address at which to begin execution	
• The executable file also contains a “debugger info section”.	
	 — The debugger info is used in reporting runtime error messages.	
	 — The debugger info will be used by the debugger tool.	
	 	

Introduction	

The linker tool takes one or more object files and combines them, producing an
executable file. The executable file contains all the information needed by the OS
kernel to load the program into memory and begin execution.	

In this chapter we give the format of the executable file.	

In Unix/Linux, executable files are sometimes called “a.out” files.	

Blitz-64: Assembler and Linker / Porter	 Page of 185 284

Chapter 10: Executable File Format	

File Format	

An executable file has two sections called the “executable section” and the
“debugger info section”. The first part of the file contains all information needed to
load a virtual address space and commence execution. The second part of the file
contains information that will only be needed if errors arise during execution or if a
debugging tool is used.	

Every file always has both sections. The debugger info section always follows the
executable section. There are no bytes outside of the sections. In other words, the
length of the file is simply the length of the executable section plus the length of the
debugger info section. The sections are concatenated to create the complete file.	

The debugger info section can be safely ignored for now. The debugger info section
is discussed later in this chapter, after the description of the execution section.	

The file can be considered as series of fields. The length of each field is given in the
left-hand column.	

The executable section of the file has the following format.	

bytes	 field description	

The following fields constitute the header information... 	
	 8	 Magic number “B64a.out” (in hex: 0x4236_3461_2E6F_7574)	
	 8	 Version Number (0x0000_0000_0000_0001)	
	 2	 Blitz-64 ISA Architecture (e.g., 0x0002)	
	 2	 Padding (0x0000)	
	 4	 Number of pages (0 if this is a kernel program)	
	 8	 Lowest used address	
	 8	 Highest used address	
	 8	 Entry Point	
	 4	 Number of modules	
	 4	 Number of symbols	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	186 284

Chapter 10: Executable File Format	

The following fields are repeated once for every region... 	
	 8	 Starting Address (0x0 … 0xF_FFFF_C000)	
	 4	 Number of pages	
	 1	 Is Executable? (1=pages should be marked “executable”)	
	 1	 Is Writable? (1=pages should be marked “writable”)	
	 2	 Padding (0x0000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all regions... 	
	 8	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	

The following fields are repeated once for every segment... 	
	 8	 Starting Address (0x0 … 0xF_FFFF_FFF8). Will be a multiple of 8.	
	 8	 Length in bytes (N). Will be a multiple of 8.	
	 4	 Number of module from which this came	
	 4	 Source code line number	
	 7	 Padding (0x00_0000_0000_0000)	
	 1	 Is zero-filled? (1=zerofilled; 0=data bytes are present)	
	 N	 The bytes to load into memory. (Only if IsZerofilled=0)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all segments... 	
	 8	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every module...	
	 4	 Number of module (1, 2, 3, …)	
	 4	 Name of .s source file: number of characters (L)	
	 L	 Name of .s source file: the ASCII characters (no terminating \0)	

After all modules...	
	 8	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	187 284

Chapter 10: Executable File Format	

The following fields are repeated once for every symbol...	
	 4	 Number of module which defined this symbol (1, 2, 3, …)	
	 4	 Source file line number	
	 8	 Value of this symbol	
	 1	 Is Label?	
	 	 	 0 = this value is probably not an address	
	 	 	 1 = this symbol derives from a label definition	
	 4	 Symbol name: number of characters (M)	
	 M	 Symbol name: the ASCII characters (no terminating \0)	

After all symbols...	
	 4	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After the Executable Section...	
	 (The Debugger Info Section, which is discussed later)	

Magic Number	

Every executable file begins with a special doubleword value. This value of this
“magic number” can be interpreted as the ASCII encoding of the characters
“B64a.out”.	

Since all valid executable files begin with this value and since this particular value is
highly unlikely to occur in other files, this is a fairly good way to catch accidental
user errors. For example, any attempt to execute a “.o” object file or to give an
executable file as input to the linker tool will be caught by the magic number check.	

The Version Number and ISA Architecture Fields	

Following the magic number is a “version number”. We understand that future
changes may be required to the format of executable files. This field exists to
accommodate changes, updates, and extensions to this file format.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	188 284

Chapter 10: Executable File Format	

This document describes “version 1” of the file format. All files conforming to this
specification will have the value 1 in this field. Any other value indicates that the
remainder of the file will conform to a different specification.	

At this time, there is only one version of this file format and the linker is only capable
of producing “version 1” files. Future versions of the linker tool may be capable of
producing different versions.	

Future versions of the Blitz kernel may or may not be able to load and execute files
in the “version 1” format or other versions. Details about future compatibility must
be documented in the future, obviously.	

The “ISA Architecture” field specifies which type of machine this code is intended to
be run on. This value must match the value from the version number in bits [30:16]
of the CSR register csr_version. In other words, the numbers used in this field and
the in csr_version are drawn from the same set and therefore have the same values
and meanings.	

At this time, the current version Blitz-64 Instruction Set Architecture (ISA) is	

	 0x0002	

In the future, changes and/or additions to the machine code instructions are likely.
For example, we plan to specify and implement the compressed instruction set in
the future. When changes are made to the ISA , the csr_version will be changed
(incremented) to reflect a modified architecture.	

Commentary We separate out the “file version number” and the “ISA architecture
version” into two fields because these really track two different kinds of changes
that can be made in the future. A change to the machine architecture may not
require a change to the file format. Conversely, a change to the file format may be
implemented even though there is no change to the ISA.	

Commentary A “Fat Executable” file contains multiple copies of the executable
code, each assembled for a different architecture. This effectively combines several
executable modules into a single file. The benefit of doing this is that a single
executable file can be run on different machines and is therefore, to this extent,
portable. At this time, we avoid fat executables, but if this added in the future, the file
format will need to be modified to accommodate multiple architectures. At that time,

Blitz-64: Assembler and Linker / Porter	 	 Page of 	189 284

Chapter 10: Executable File Format	

the file format “version number” will be increased to reflect the changes to the file
format.	

Padding Bytes	

Executable files contain a large amount of data that must be moved from the file into
memory. It is crucial that loading an executable into memory be made as fast as
possible, since load-time is consumed whenever a program is executed.	

In order to speed up this copying, it is important for the data to be properly aligned.	

To make sure subsequent fields are doubleword aligned, there are “padding bytes”
inserted into the executable file in a couple of places. These byte should be zeros.	

Number of Pages	

Every executable is either a “kernel program” or a “user program”. Kernel programs
will be loaded into kernel memory (i.e., addresses within 0x0 … 0x3_FFFF_FFFF).
User programs will be loaded into the virtual memory region (i.e., addresses within
0x8_0000_0000 … 0xF_FFFF_FFFF).	

If this file contains a kernel program, the “number of pages” field will be 0 and there
will be no regions. Otherwise, this field will indicate the number of memory pages
that are required to run this program.	

Typically, the OS kernel will allocate the required number of pages all at once, and
then fill them in subsequently. (This is because allocating the pages piecemeal may
result in a deadlock. Consider the situation in which some processes have grabbed
some of the pages they need but are waiting to get additional pages.)	

In order to know how many pages are required (so they can all be obtained before
any are needed), this field tells how many will be required.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	190 284

Chapter 10: Executable File Format	

Lowest and Highest Used Addresses	

These values give the full range of addresses that will be used by the program.	

For user programs, the lowest address will always be a page-aligned address and the
highest address will a page-aligned address, minus 1.	

For kernel programs, the lowest and highest addresses used will not necessarily be
page-aligned. These values are important for loading a kernel. The kernel program
will be loaded by some form of “boot loader”. Both the boot loader and the kernel
will reside in the kernel address space. This check is important so that the boot
loader can make sure that the material it is loading will not overwrite the boot
loader itself.	

Entry Point	

Every program must define a value for and export the symbol “_entry”. This value
should be a legal address. Once loaded into memory by the kernel at runtime,
execution will begin at this location. In the case of the kernel program, the boot
loader program will end by jumping to this address.	

If the linker is compiling a kernel program (i.e., if the -k command line option is
present), the linker will ensure that the value is within the kernel address space, i.e.,
0x0 … 0x3_FFFF_FFFF. Otherwise, the linker will ensure the address is within the
user address space, i.e., 0x8_0000_0000 … 0xF_FFFF_FFFF.	

The linker will not ensure that the address is within an allocated page or segment. If
this entry address is not an allocated address, the program will presumably signal an
unrecoverable page fault or addressing error immediately upon execution at
runtime, if it is a user program. If it is the kernel program, an illegal instruction
exception will probably be signaled.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	191 284

Chapter 10: Executable File Format	

Separators	

The separators, which were discussed earlier, serve as a check to make sure the file
format is followed. 	

List of Regions	

There will be zero or more regions listed after the header information.	

Kernel programs will have no regions; user programs will have one or more regions.	

For each region, several fields will appear. The first field is “starting address”, which
will never be negative. Following the regions, a value of 0xFFFF_FFFF_FFFF_FFFF
(i.e., -1) will appear. The -1 value will mark the end of the list of regions.	

A region is a set of one or more pages, all of which are contiguous, i.e., placed
sequentially in memory, one after the other, with no intervening gaps. The field
called “number of pages” tells how large the region will be. You can multiply the
number of pages by the page size to determine the size of the region in bytes.	

A page can be…	

	 • Either writable or read-only, and	
	 • Either executable or not executable	

The next two fields “Is Executable?” and “Is Writable?” tell how the pages should be
marked before execution begins. All the pages in a region will have the same
protection attributes. That is, all pages in the region are to be marked identically.	

The collection of pages in the region list describes how the kernel should set up the
virtual address space before the program begins. (The kernel will also add
additional pages, e.g., for stack and environment variables).	

Each region is ends with a separator.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	192 284

Chapter 10: Executable File Format	

List of Segments	

After the header list there will be a list of segments. Each segment is described by a
block of fields that begins with “starting address” and ends with a separator.	

The starting address will never be negative. After the list of segment blocks, there
will be a field with value -1 (i.e., 0xFFFF_FFFF_FFFF_FFFF). This -1 value will occur
in place of the starting address of the next segment and is used to determine when
the list of segment blocks ends.	

A segment (as discussed in the context of the executable file format) gives the actual
data bytes that must be loaded into memory. Each segment contains a starting
address, a length in bytes, and a block of data. The “starting address” tells where to
place the data and the “length in bytes” tells how big the block of data is.	

Some segments are “zero-filled”, which means that they contain nothing but zeros.
To avoid storing long strings of zeros in the file, the segment is marked “zero-filled”
and the block of data is not given. The field “Is Zerofilled?” is used to determine
whether (A) a data block is present and must be moved into memory, or (2) no data
block is present and the memory is to be zero-ed instead.	

Every assembly language segment starts with a .begin pseudo-op and there is a one-
to-one correspondence between .begin pseudo-ops and segments.	

Every segment in an assembly language source file will result in one segment being
placed into the executable file.	

Caveat Segments in the assembly language file can actually have zero length. This is
not an error, although a segment of zero length is meaningless and the product of
sloppy programming. For a segment of zero size, nothing will be placed in the
executable file.	

So, more precisely: For every assembly code segment of length greater than zero,
there will be a segment in the executable file. Segments from the assembly file will
never be broken apart and correspond to no more than one segment in the
executable file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	193 284

Chapter 10: Executable File Format	

Furthermore, the linker may also insert additional segments that do not correspond
to any .begin in the assembly source file. These segments will always be zero-filled.
These extra zero-filled zones result from and fill the gaps between the segments.	

Every byte in every page in every region included in the executable file will be given
a value exactly once. Most bytes in the executable will come from the code and/or
data specified in the assembly source file. However, any byte not explicitly specified
is required (by the Blitz-64 design spec) to be initialized to zero.	

When the linker places the segments into pages, there may be gaps. These gaps can
occur because the programmer specified “startaddr=“ values and these resulted in
gaps between segments or resulted in unused space at the beginning of the page.
Gaps will also occur whenever segments fail to completely fill a page.	

To ensure that these gaps are properly initialized, the linker creates additional zero-
filled segments that describe the areas that must be initialized at load-time.	

Commentary Copying bytes and initializing bytes may perhaps be done by special
DMA hardware outside the processor core. However, it is reasonable in many
systems to perform these operations directly by machine code executing in the core.	

Let’s compare the cost of copying bytes versus zero-filling bytes.	

To copy bytes, a loop such as this may be required:	

r1 = destination ptr
r2 = source ptr
r3 = stop value
loop:

load.d r4,0(r2)
store.d 0(r1),r4
addi r1,r1,8
addi r2,r2,8
blt r1,r3,loop

This example omits a lot of details, including loop setup and boundary conditions. It
also assumes the addresses are properly aligned. Regardless, this seems to be the
minimal loop needed for the bulk of a large copy operation.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	194 284

Chapter 10: Executable File Format	

On the other hand, the code to initialize a large block of memory might depend on a
loop such as this:	

r1 = destination ptr
r3 = stop value
loop:

store.d 0(r1),r0
addi r1,r1,8
blt r1,r3,loop

The bottom line is that zero-filling a large region of memory will be substantially
faster than copying bytes into that region. And this doesn’t even consider the cost of
storing and reading in data from the executable file.	

So there is good reason to accommodate zero-filled segments.	

Modules and Symbols	

The executable file contains:	

	 • A list of all modules	
	 • A list of all symbols	

This information is not necessary to load and execute the program. Typically, the OS
kernel will ignore and skip this information when a program is read and loaded into
memory prior to execution.	

This information is provided for use in disassembling and debugging a program.
After loading a program into memory, a debugging tool can go back to the executable
file and retrieve this additional information for use in the debugging process.	

A single module is included in the file for every .o object module that was included
by the linker in the executable file. The only information included is the name of the
original .s source file from which the module came. This module information is
included so that each symbol can be associated with the name of the file in which it
was defined.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	195 284

Chapter 10: Executable File Format	

The executable file also includes a number of symbols. The information for each
symbol includes both a reference to the module number (so the source filename in
which this symbol was defined can be retrieved), along with the line number in that
file.	

Every symbol that is used as a label is included in the executable file. Every symbol
that is defined with a .equ pseudo-op is included.	

Each symbol has an associated value. The symbols do not appear in the executable
file in any particular order. The are neither in alphabetical order nor in numerical
order by value.	

Each symbol has a flag to indicate whether it is thought to be an address or not. This
information is not precise. For example, consider this code:	

loc: .equ 0x800000000
…
movi r1,loc
loadb r7,0(r1)
…
loadb r7,loc

As you can see from the way it is used, the symbol “loc” is clearly an address. Yet
“loc” will not be identified within the executable file as an address.	

In the following example, the symbols “var1” and “var2” will be identified as
addresses in the executable file:	

var1: .word 0
var2: .equ var1+2

…
loadb r7,var1

When displaying out the contents of memory, a debugger tool is free to use the
symbols information when displaying information. Although the following example
is only suggestive, it shows how a debugger might display the contents of memory
and the value of having information about symbolic addresses during debugging.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	196 284

Chapter 10: Executable File Format	

 800000b80: a4
 800000b81: 02
var1:
 800000b82: 7c
 800000b83: 15
var2:
 800000b84: 8f
 800000b85: 44
 800000b86: 28
 800000b87: 05

The Debugger Info Section	

The initial portion of the executable file contains the information necessary to load
and execute the program. The format of the initial section of the file was described
above. After the initial executable section, the file includes a second section of data
which is only used for error reporting and runtime debugging.	

The second section is called the debugger info section. During normal, error-free
executions of the program, the debugger info will never be read from the file.
However, when a runtime error occurs or whenever the programmer wants to use
the debugger tool, the debugger section will be read from the file.	

The format of the debugging section is designed to promote simple and fast loading
into memory. This is important because when an error occurs at runtime, the goal is
to display an error message quickly.	

A typical error message might look like this:	

NULL POINTER EXCEPTION: Assignment stmt in “myFunction” in package
“MyPack”, line N	

One purpose of the debugger info is to supply the underlined information:	

	 Function Name — The currently executing function	
	 Package Name — The source package name associated with this function	
	 Statement Type — The most relevant statement information	
	 Line Number — The line number of the statement	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	197 284

Chapter 10: Executable File Format	

The error reporting will have only the current address (i.e., the PC) at which the
error occurred. From this value, it must be possible to quickly determine the above
information.	

The error reporting code may be a part of the failing program. That is, the error
handling code may be linked and loaded with the failing program and the program
may be responsible for printing the error message itself. Or, it may be that the OS
kernel will produce the error message and the failing program will not execute any
more instructions.	

In any case, the error reporting code will need the identity of the executable file,
from which the debugger info section can be read. How that file is obtained is not
discussed further here.	

Another purpose of the debugger info is for use by a debugger tool. In that scenario,
the debugger tool will read in the debugger info from the executable file upon
startup. The performance constraints are not as important in this scenario. The tool
is free to read in the information and build complex internal data structures that it
will use during the debugging session.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	198 284

Chapter 10: Executable File Format	

Layout of Debugging Information	

Here is the format of the debugger section: 	

bytes	 field description	

The following fields constitute the header... 	
	 4	 Number of modules (K); will be > 0	
	 4	 Number of Global blocks included below	
	 4	 Number of Function blocks included below	
	 4	 Number of Statement blocks included below	

The following fields are repeated once for every Module... 	
	 4	 Module number (1, 2, 3, …, K)	
	 	 	 Same module numbers as in executable section.	
	 	 	 These will be in numerical order.	
	 	 	 Every module will be represented here, even if there is no info.	
	 	 	 No info means that both strings are “\0”.	
	 4	 Package name: number of bytes (M; will be > 0)	
	 M	 Package name: the UTF-8 encoded characters (with terminating \0)	
	 4	 The second string: number of bytes (N; will be > 0)	
	 N	 The second string: the UTF-8 encoded characters (with terminating \0)	
	 4	 The .o object filename: number of bytes (P; will be > 0)	
	 P	 The .o object filename: the UTF-8 encoded characters (with term. \0)	
	 4	 The .s source filename: number of bytes (R; will be > 0)	
	 R	 The .s source filename: the UTF-8 encoded characters (with term. \0)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all Modules...	
	 4	 Zero to terminate (in hex: 0x00000000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every Global…	
	 4	 Module number (will be > 0)	
	 4	 Source line number	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 8	 Address in memory	
	 	 	 (The globals are not in any order)	
	 4	 Global name: number of bytes (M); will be > 0	
	 M	 Global name: the UTF-8 encoded characters (with terminating \0)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	199 284

Chapter 10: Executable File Format	

After all Global entries...	
	 4	 -1 to terminate (in hex: 0xFFFFFFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every Function…	
	 4	 Source line number	
	 4	 Module number (will be > 0)	
	 4	 Frame size (not negative; 0 = leaf function)	
	 8	 Starting Address in memory	
	 	 	 (The functions are not in any order)	
	 8	 Beyond Address in memory	
	 4	 Function name: number of bytes (M); will be > 0	
	 M	 Function name: the UTF-8 encoded characters (with terminating \0)	

The following fields are repeated once for every Register Parameter…	
	 4	 Source line number (>= 0)	
	 1	 Register number (1 … 15)	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Parameter name: number of characters (M); will be > 0	
	 M	 Parameter name: the UTF-8 encoded chars (with terminating \0)	

After all Register Parameters…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every Local Variable…	
	 4	 Source line number (>= 0)	
	 4	 Offset from stack top	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Variable name: number of bytes (M); will be > 0	
	 M	 Variable name: the UTF-8 encoded chars (with terminating \0)	

After all Local Variables…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	200 284

Chapter 10: Executable File Format	

The following fields are repeated once for every Statement…	
	 4	 Source line number (>= 0)	
	 8	 Address in memory	

	 	 	 	 	 (The statements are not in any order)	
	 1	 Type Code (0=comment, 1=assign, …)	
If and only if type code = comment, the following will be present…	

	 4	 Comment String: number of bytes (M); will be > 0	
	 M	 Comment String: the UTF-8 encoded chars (with terminating \0)	

After all Statements…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all Function entries...	
	 4	 -1 to terminate (in hex: 0xFFFFFFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	201 284

Chapter 11: Object Libraries	

Quick Summary	

•	A “library object file” is a binary file.	
•	The library file has an extension of “.lib”.	
	 	 •	The library file is identified by its own magic number (“B64o_lib”).	
•	The library file begins with an index.	
•	Each index entry contains:	
	 — File name of original “.o” file	
	 — Where in the library file the module begins (Length is unnecessary.)	
	 — A list of all symbols exported by that module	
•	The index is followed by object modules.	
	 	 •	There will be one or more modules in the file.	
	 	 •	Each module has the same format as the object file it came from.	
•	Object modules may import symbols.	
	 	 •	There is no checking to make sure the imported symbols are defined.	
•	A library is created by the “createlib” tool.	
	 	 • The tool takes one or more object files as input.	
	 	 •	The tool adds all object modules to the newly created library file.	
•	The “createlib” tool will issue an error if the same symbol is exported by more
than one object module.	
•	The linker tool will issue an error if the same symbol is exported in two different
libraries or conflicts with an input object file.	
•	The “dumpobj” tool can be used to display the contents of an object library, as well
as an object file.	

The Format of a Library File	

The library file has the following format. The file can be considered as series of
fields. The length of the fields is given in the left-hand column.	

Blitz-64: Assembler and Linker / Porter	 Page of 202 284

Chapter 11: Object Libraries	

bytes	 description	

The following fields constitute the header information... 	
	 8	 Magic number "B64o_lib" (in hex: 0x4236_346F_5F6C_6962)	
	 8	 Version Number (0x0000_0000_0000_0001)	
	 8	 Number of object modules	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every object module... 	
	 4	 Name of original .o file: number of characters (M)	
	 M	 Name of original .o file: the ASCII characters (no terminating \0)	
	 8	 Offset into file of this object module	

Repeated once for every exported symbol in this module… 	
	 4 	 Symbol name: number of characters (N)	
	 N	 Symbol name: the ASCII characters (no terminating \0)	

To terminate the list of symbols… 	
	 4	 Zero	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following data blocks are repeated once for every object module... 	

	 X	 The object file contents (X bytes = size of original .o file)	

Introduction and Motivation for Libraries	

A typical program will use functions that have been written previously by someone
else. Typically there exists a large collection of functions that are intended for re-use
by many different, unrelated programs.	

For example, consider a collection of math-related functions, such as:	

	 sin, cos, sqrt, log, …	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	203 284

Chapter 11: Object Libraries	

These functions are written once and used in many different programs. There may
be hundreds of such math functions although a particular program will use, at most,
only a few of them.	

When creating an executable file, we need a way to include only the functions that
are needed, without including code that is not needed. The simple solution of
including all math functions in every program is unacceptable. This would lead to
very large executable files and constitute a waste of memory.	

A library is a single file containing the entire collection of all the functions. In this
example, the “math library” is a single file containing all the math functions that are
available for use. Since there are many math functions, this file may be quite large.	

First, let’s consider a program which does not use a library.	

After writing and assembling a program, a “.o” object file will be created. In fact, a
large program may have several assembly source files, and several “.o” object files
may be needed. The linker will combine all the object files and produce the
executable file. The linker will include all the code and data bytes in all the object
files, regardless of whether it is necessary or not.	

Next, we discuss how a library file is used.	

When linking the program, the linker tool may also consult a library file. Typically,
the input to the linker consists of a list of object files, as well as a library file to
consult.	

If the program makes use of some math function — say “cos” for example — the
linker will include the code for that function in the executable. If a function is not
used — for example, the “sqrt” function — the code for that function will not be
included.	

The linker understands the format of the library file and will extract from it only the
functions that are needed.	

So far, we have only mentioned a single library file. In our example, we discussed a
library file containing all the math functions. There may be more than one library
file. For example, a second library file might contain all the functions related to
formatting output. A third library file might contain functions related to the
graphical user interface.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	204 284

Chapter 11: Object Libraries	

The linker is capable of taking as input more than one library file. Whenever a
function (such as “cos”) is used but not defined, the linker will search all the library
files in order to locate a module containing the “cos” function and will include it in
the executable.	
	 	

About the Library File	

Each “.o” object file contains all the data and code bytes specified in a single “.s”
assembly source code file.	

Within that object file, there will typically be a number of symbols which are defined
and exported. There may also be symbols which are imported and used, but not
defined in the file. The object file may contain a single function or several functions
and may contain data as well.	

(As mentioned in previous chapters in this document, the code and data within a
single object file is broken into segments, but we will ignore segments in this
discussion.)	

A library file consists of an index, followed by a number of “object modules”.	

An object module is nothing more than an object file: they have exactly the same
format. We say object “module” instead of object “file” because — in this context —
it is only a part of the library file, not a file on its own.	

Another way to say this is:	

A library file consists of a number of object files concatenated
together, one after the other, with an index placed at the front. The
size in bytes of the library file is exactly the sum of the sizes of all the
object files that went into it, along with the size of the index.	

A library file is created with the “createlib” tool. The input to this tool is a list of
all the object files that are to be placed into the library file. The tool reads all the
object files, creates the index, then copies the index and all the object files into the
newly created library file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	205 284

Chapter 11: Object Libraries	

The index contains an entry for each object module in the library. The entry lists the
symbols which are exported by that object module.	

For example, here is the command to create a library file. We assume that a number
of files (such as “sin.s”, “cos.s”, “sqrt.s”, “log.s”, …) have been previously
assembled. This command will create a new file, which is given a name following the
“-o” output option.	

createlib sin.o cos.o sqrt.o log.o … -o math.lib

Now assume that a programmer has created a program consisting of two assembler
source code files called “MyProg.s” and “MoreCode.s”, and wishes to create an
executable file “MyExe”.	

asm MyProg.s	 Creates “MyProg.o”
asm MoreCode.s 	 Creates “MoreCode.o”

In order to create an executable file, the linker tool will be used to combine the
material from “MyProg.o” and “MoreCode.o”. In addition, the library file called
“math.lib” will be consulted, along with a second library file called
“output.lib”, which contains functions related to output formatting.	

Here is the command to create the executable. The executable filename, “MyExe”, is
given after the “-o” output option.	

link MyProg.o MoreCode.o math.lib output.lib -o MyExe

When the linker tool is used, it begins by reading the index for each and every
library file that is to be consulted.	

Then the linker will read every “.o” file and include that material in the executable
file. After this step, if there are symbols which have been imported but not exported
by any of the object files, the linker will consult the library indexes.	

If the linker tool can locate an object module in one of the libraries that exports the
needed symbol, the linker will include the material from that object module in the
executable. If the linker cannot find any module that exports the needed symbol, it
will issue an error message to the effect that “The symbol xxx is undefined; it is
imported but not exported by any object file.”	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	206 284

Chapter 11: Object Libraries	

The linker will continue to add modules from the library files until all symbols have
been defined.	

An object module in a library may itself import a symbol. This will cause other object
modules to be added to the growing executable file.	

The order in which the object files and library files are listed on the linker command
line does not matter. The material from all object files will be added to the
executable file.	

The linker is able to determine whether an input file is an object file or a library file.
The linker ignores the “.o” and “.lib” extensions. These extensions are customary
and useful for humans to know what is in the file, but the linker doesn’t use them to
determine what sort of file it is. Instead, the linker looks at the file contents directly.
Object files can be distinguished from library files because each type of file begins
with a different “magic number”, which the linker uses to determine what the file
contains.	

The first 8 bytes of the file will be:	

	 Magic number	 As ASCII	 Meaning	
0x4236_346F_626A_6374 B64objct	 This is an object file	

	 0x4236_346F_5F6C_6962 B64o_lib	 This is a library file	

Typically, each object module in a library file will contain a single function, but this
doesn’t have to be the case. Next, we examine a more complex example in which a
single object module may export several symbols and where an object module in a
library can itself import a symbol from another object module.	

A single object module may contain several functions. Such an object module would
presumably export several symbols, one for each function it contains. In other
words, whenever a single module in a library file contains several functions, the
name of each function would presumably be exported. Each function will begin with
a labeled instruction and those labels would be exported.	

If any single symbol is used in the main program, it will cause the linker to pull in the
entire module, with all the functions it includes, as well as all the symbols the
module defines and exports. So, in the case where a single module contains several
functions, the use of any one of those functions will cause all the functions in the
module to be included in the executable.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	207 284

Chapter 11: Object Libraries	

Normally this behavior is not what is wanted, and the builder of the library will
place each function in a separate module. Then, the inclusion of one function will not
cause the other functions to be added, unless it specifically uses some other function
(i.e., it imports the symbol naming some other function). 	

The object modules in a library need not contain only functions. They can contain
arbitrary bytes.	

As an example of modules that contain data, consider the implementation of the
“sin” and “cos” functions. One possible implementation is to include a table of pre-
computed values and compute the “sin” function by simply looking up the value in
the table.	

The value of sin(x), where x ranges from 0° to 90°, is sufficient to capture the shape
of the entire sin curve, since sin(x) for all other values of x can be computed using
simple identities.	

A reasonable implementation is to include data points for (say) 10,000 values of x
from 0° to 90° in a look-up table. Of course there are an infinity of values between 0°
to 90°, but 10,000 seems like a reasonable number to include. For intermediate
values of x not included in the table, the algorithm will look up the values for the
nearest two points and perform a linear extrapolation. Using this general approach,
very precise values for sin can be computed.	

The shape of the cos curve is identical to the sin curve, only shifted in phase, and one
implementation of cos might make use of the same table of values. The table is
relatively large and we only want to include it in the executable file if either sin or
cos is used.	

In this example, there will be three separate modules: (1) the sin function, (2) the
cos function, and (3) the table of values, which is needed by both functions. The use
of either sin or cos will cause the module containing the table to be loaded. If both
sin and cos are used, then only one copy of the table will be loaded.	

This can be achieved as follows: The source file containing the table will export a
single symbol, namely the label addressing the first element in the table. Both the
source files for sin and cos will import this symbol.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	208 284

Chapter 11: Object Libraries	

[This example was somewhat contrived. It seems more likely that the sin function
and the table would be combined into a single module, while cos would be
implemented as a function that adds 90° to x and then calls the sin function to do all
the work. I believe a better design would be to put sin, cos, and the table all into a
single module.]	

When a library file is created, the createlib tool combines a number of object
files into a single file. Each object file will export one or more symbols and may
import symbols, as well.	

Each object module in a library must export at least one symbol, otherwise there is
no way for that object module to be pulled in to the executable file. The createobj
tool will check this, and issue an error message if necessary.	

Two object modules in a single library must not export the same symbol. The
createlib tool will check this, and issue an error message if necessary. Likewise,
during linking, the same symbol must not be exported multiple times, from different
object files or from modules brought in from different libraries. The linker tool will
check this, and issue an error message if necessary.	

However, we do allow an object module to export a symbol that is also exported
from a module in a library file, as long as the library module is not brought in for
inclusion in the executable file. The reason is this: It is possible that the library
contains some function which just happens to have a common name that a
programmer has coincidentally chosen for an unrelated meaning.	

For example, a program concerned with computing the energy efficiency of a wind
turbine might reasonably define a function named “power” to compute the wattage
of a turbine. Unknown to the programmer, the math library might contain a module
which happens to export the symbol “power”, for example to compute the function
xn. No error will be reported since there is no ambiguity. The programmer need not
ever know that he/she happened to choose a symbol spelling that coincided with a
symbol in the math library.	

Each object module in a library may import symbols. A symbol imported by one
object module need not be exported by another module in that library. During
linking, any imported symbol (regardless of whether imported by an object file or by
an object module included from a library) must be exported exactly once by some
other object file or object module. The linker tool will check this, and issue an error
message if necessary.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	209 284

Chapter 11: Object Libraries	

The Version Number Field	

Following the magic number is a “version number”. This document describes
“version 1” of the file format.	

Note The object file format and the executable file format both contain an “ISA
Architecture” field, in addition to the “version number”. There is no “ISA
Architecture” field in the library file header, since our approach is not dependent on
the ISA. A modification or change to the ISA should never require a change to the
library header.	

However, note that the individual object modules each contain an “ISA Architecture”
field, so any alteration to the architecture version will be represented in the library
file, within the individual modules.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	210 284

Appendix 1: Machine Instructions	

	 Format A-0	 <no operands>	
	 	 ILLEGAL Canonical form of illegal instruction
	 	 SYSRET PC ← csr_prev; csr_status ← csr_stat2
	 	 SLEEP1 Enter light sleep state
	 	 SLEEP2 Enter deep sleep state
	 	 RESTART Same as Power-On-Reset
	 	 DEBUG
	 	 BREAKPOINT
	 	 TLBCLEAR Invalidate all TLBs for current ASID	
	 	 FENCE 	

	 Format A-1	 Reg1	
	 	 CHECKB r1 Trap if reg not within -128 … +127
	 	 CHECKH r1 Trap if reg not within -32768 … +32767
	 	 CHECKW r1 Trap if reg not within 32 bit range

PUTSTAT r1 CSR_STATUS [9:3] ← Reg1 [9:3]
TLBFLUSH r1 Invalidate TLB for virtual address in Reg1

	 Format A-2	 RegD,Reg1	
	 	 ENDIANH r7,r1 Reorder bytes: 76543210 → 67452301
	 	 ENDIANW r7,r1 Reorder bytes: 76543210 → 45670123
	 	 ENDIAND r7,r1 Reorder bytes: 76543210 → 01234567
	 	 SEXTB r7,r1 Sign extend byte to 64 bits
	 	 SEXTH r7,r1 Sign extend 16 bits to 64 bits
	 	 SEXTW r7,r1 Sign extend 32 bits to 64 bits
	 	 FNEG r7,r1
	 	 FABS r7,r1
	 	 FSQRT r7,r1
	 	 FCLASS r7,r1 RegD ← classify(Reg1) || FLOAT_STATUS
	 	 FCVTFI r7,r1 Convert: floating-point ← int

Blitz-64: Assembler and Linker / Porter	 Page of 211 284

Appendix 1: Machine Instructions	

	 	 FCVTIF r7,r1 Convert: int ← floating-point

	 Format A-3	 RegD,Reg1,Reg2	
	 	 ADD r7,r1,r2
	 	 ADDOK r7,r1,r2
	 	 SUB r7,r1,r2
	 	 MUL r7,r1,r2
	 	 DIV r7,r1,r2
	 	 REM r7,r1,r2
	 	 AND r7,r1,r2
	 	 OR r7,r1,r2
	 	 XOR r7,r1,r2
	 	 SLL r7,r1,r2
	 	 SLA r7,r1,r2 Shift-left-arithmetic; checks for overflow
	 	 SRL r7,r1,r2
	 	 SRA r7,r1,r2
	 	 ROTR r7,r1,r2 Rotate right; no overflow check
	 	 TESTEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0
	 	 TESTNE r7,r1,r2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0
	 	 TESTLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0
	 	 TESTLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0
	 	 FEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)
	 	 FLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)
	 	 FLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)
	 	 FADD r7,r1,r2
	 	 FSUB r7,r1,r2
	 	 FMUL r7,r1,r2
	 	 FDIV r7,r1,r2
	 	 FMIN r7,r1,r2
	 	 FMAX r7,r1,r2

	 Format A-4	 RegD,Reg1,Reg2,Reg3	
	 	 ADD3 	 r7,r1,r2,r3	 Reg3 ← Reg1+Reg2+Reg3 (unsigned)	
	 	 ALIGNH 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGNW 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGND 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 INJECT1H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3 	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	212 284

Appendix 1: Machine Instructions	

	 	 INJECT2H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1W 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2W	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 FMADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3
	 	 FNMADD r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) + Reg3
	 	 FMSUB r7,r1,r2,r3 RegD ← (Reg1 × Reg2) - Reg3
	 	 FNMSUB r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) - Reg3	
	 	 MULADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3	
	 	 MULADDU r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	
	 	 INDEX0 r7,r1,r2,r3 Reg1=arrayPtr, Reg2=header, Reg3=index	
	 	 INDEX1 r7,r1,r2,r3 . RegD ← Reg1 + 8 + (Reg3 * scale)	
	 	 INDEX2 r7,r1,r2,r3 . Reg2=header=[ArrayMAX||ArrayCURR]	
	 	 INDEX4 r7,r1,r2,r3 . Trap if (Reg3 < 0) or (Reg3 ≥ ArrayCURR)	
	 	 INDEX8 r7,r1,r2,r3 . or (ArrayMAX = 0)	
	 	 INDEX16 r7,r1,r2,r3 .	
	 	 INDEX24 r7,r1,r2,r3 .	
	 	 INDEX32 r7,r1,r2,r3 .	
	 	 CAS r7,r1,r2,r3 Compare and Swap: If *r1=r2 then *r1←r3	

	 Format A-5	 Reg1,Reg2	
	 	 <no longer used>	

	 Format A-6	 Reg2	
	 	 <no longer used>	

	 Format A-7	 RegD,Reg1,Reg2	
	 	 CSRSWAP r7,csr,r2 Reg1 encodes CSR; RegD ← CSR; CSR ← Reg2 	

	 Format A-8	 RegD,Reg1	
	 	 CSRREAD r7,csr Reg1 encodes CSR; RegD ← CSR; 	

	 Format A-9	 RegD	
	 	 GETSTAT r7,csr RegD ← CSR_STATUS & 0x0000…03f8 	

	 	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	213 284

Appendix 1: Machine Instructions	

Format B-1	 RegD,Reg1,immed-16	
	 	 ADDI r7,r1,0x1234
	 	 ANDI r7,r1,0x1234
	 	 ORI r7,r1,0x1234
	 	 XORI r7,r1,0x1234
	 	 TESTEQI r7,r1,0x1234 RegD ← (Reg1=immed) ? 1 : 0
	 	 TESTNEI r7,r1,0x1234 RegD ← (Reg1≠immed) ? 1 : 0
	 	 TESTLTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTLEI r7,r1,0x1234 RegD ← (Reg1≤immed) ? 1 : 0
	 	 TESTGTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTGEI r7,r1,0x1234 RegD ← (Reg1≥ immed) ? 1 : 0
	 	 UPPER16 r7,r1,0x1234 RegD ← (immed<<16) + Reg1
	 	 SHIFT16 r7,r1,0x1234 RegD ← (Reg1+immed) << 16	
	 	 CONTROL r7,r1,0x1234
	 	 CONTROLU r7,r1,0x1234

ENTERFUN sp,sp,32	 	 Push frame onto stack, save lr in frame 	11

EXITFUN sp,sp,32	 	 Retrieve lr, pop frame, and return	

	 Format B-2	 RegD,immed-16(Reg1)	
	 	 LOAD.B r7,offset(r1) Value is sign-extended to 64 bits
	 	 LOAD.H r7,offset(r1) . May cause unaligned exception
	 	 LOAD.W r7,offset(r1) . No overflow check on addr calculation
	 	 LOAD.D r7,offset(r1)
	 	 JALR lr,offset(r1) RegD ← return addr; Target ← offset+Reg1	

	 Format B-3	 RegD,Reg1,immed-3	
	 	 CHECKADDR r7,r1,5 Reg1 = virt addr; RegD ← except. code or 0

	 Format B-4	 immed-10	
	 	 SYSCALL 123 immed-10 selects one of 1,024 syscalls	

 For ENTERFUN and EXITFUN, any source and destination registers can be used, but these 11

instructions only make sense for sp.

Blitz-64: Assembler and Linker / Porter	 	 Page of 	214 284

Appendix 1: Machine Instructions	

	 Format B-5	 RegD,Reg1,immed-6	
	 	 SLLI r7,r1,5
	 	 SLAI r7,r1,5 Shift-left-arithmetic checks for overflow
	 	 SRLI r7,r1,5
	 	 SRAI r7,r1,5
	 	 ROTRI r7,r1,5 Rotate right; no overflow check	

	 Format B-6	 Reg1,immed-16	
	 	 CSRSET csr,0x1234 Reg1 encodes CSR; Set selected bits in CSR
	 	 CSRCLR csr,0x1234 Reg1 encodes CSR; Clear selected bits in CSR

	 Format C-1	 immed-16(Reg1),Reg2	
	 	 STORE.B offset(r1),r2 Upper bits in reg are ignored
	 	 STORE.H offset(r1),r2 . May cause unaligned exception
	 	 STORE.W offset(r1),r2 . No overflow check on addr calculation
	 	 STORE.D offset(r1),r2

	 Format C-2	 Reg1,Reg2,immed-16	
	 	 B.EQ r1,r2,MyLabel Branch if Reg1=Reg2; Offset is PC-relative
	 	 B.NE r1,r2,MyLabel Branch if Reg1≠Reg2; Offset is PC-relative
	 	 B.LT r1,r2,MyLabel Branch if Reg1<Reg2; Offset is PC-relative
	 	 B.LE r1,r2,MyLabel Branch if Reg1≤Reg2; Offset is PC-relative	

	 Format D-1	 RegD,immed-20	
	 	 UPPER20 r7,MyLabel RegD ← (immed<<16)
	 	 AUIPC r7,MyLabel RegD ← (immed<<16) + PC
	 	 ADDPC r7,MyLabel RegD ← immed+PC	
	 	 JAL lr,MyLabel RegD ← return addr ; Target ← PC+immed	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	215 284

Appendix 2: Command Line Tools	

Quick Summary	

• The following tools are discussed:	
	 asm	 Assembler	
	 link	 Linker	
	 createlib	 Tool to create library files	
	 dumpobj	 Tool to display object files	
	 hexdump	 Tool to display contents of binary files	
• For each tool, the command line options are described.	

The Assember Tool	

The assembler tool is a program named “asm”. A typical use is:	

asm hello.s

A particularly useful option is “-l”, which will produce a listing. This is useful in
seeing exactly what machine codes are being produced by the assembler.	

asm hello.s -l

The following command line options may be given in any order:	

filename	

The input source will come from this file. (Normally this file will end with
“.s”.) If an input file is not given on the command line, the assembly source
code program will come from stdin. Only one input source file is allowed.	

Blitz-64: Assembler and Linker / Porter	 Page of 216 284

Appendix 2: Command Line Tools	

-o filename

(oh) If there are no errors, an object file will be created. The -o option can be
used to give the object file a specific name. If this option is not used, then the
input source file must be named on the command line (the source must not
come from stdin). If -o is not used, the name of the object file will be
computed from the name of the input file by removing the “.s” extension, if
any, and appending “.o”. For example: 	

test.s → test.o
foo → foo.o

-h

Print information describing the command line options, which is roughly
identical to the information in this section. All other options are ignored and
the tool terminates immediately.	

-l

(el) Print a listing on stdout. The listing shows the entire source file and, for
every line, indicates what bytes have been produced. The listing is best
viewed in a fixed-width font.	

-w

This option will suppress all warning messages.	

-z

Wait for the linker. Defer the translation of some synthetics instructions to the
linker, which may find slightly shorter translations in a few rare cases.	

This option will force the assembler to defer to the linker all synthetic
translations that are not guaranteed to be optimal.	

This primarily concerns a JUMP/CALL to an absolute value that the assembler
determines can be done in two instructions. However, if the linker happens to
place the segment containing the JUMP/CALL close to the segment containing
the target address, it might be possible for the linker to translate the JUMP/

Blitz-64: Assembler and Linker / Porter	 	 Page of 	217 284

Appendix 2: Command Line Tools	

CALL using a single PC-relative JAL instruction. This option forces the
assembler to only translate JUMP/CALL instructions when it can be done in
one instruction, or when the target address is not a valid memory address.	

A similar situation occurs with a MOVI that is moving an absolute value in the
range 0x0_0000_8000 ... 0xF_FFFF_FFFF into a register. Such an instruction is
likely to be loading the address of a JUMP/CALL target and will require two
instructions if done by the assembler. The linker may be able to translate the
MOVI with a single ADDPC instruction. This option will prevent the assembler
from translating the MOVI using two instructions.	

This situation can also be triggered for a segment which is not assigned a
value for “gp=“. Since the assembler doesn’t know whether this segment will
be in kernel space or in user space, it cannot assigned the default. It is
possible that the linker will assign a default value that will make shorter
instruction sequences for MOVI, JUMP, CALL, Bxx, LOADx, and STOREx
instructions usable.	

-zw

This option is related to the -z option. This option will cause warnings to be
generated whenever the assembler is synthesizing an instruction in a way
that might not be optimal.	

-s

Print the symbol table on stdout. This listing lists each symbol in the source
file and, for each, shows its attributes, including its value (if known), whether
the symbol is imported or exported, and which line the symbol was defined
on. The output should be viewed in a fixed-width font.	

-nodebug

By default, the assembler adds debugging info to the .o output file. This
option suppresses this; if present no debugging information will be put into
the output file. This option causes the assembler to ignore the debugging
pseudo-ops, namely:	

	 .sourcefile	
	 .function	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	218 284

Appendix 2: Command Line Tools	

	 .endfunction	
	 .global	
	 .local	
	 .regparm	
	 .stmt	
	 .comment	

-d

Print internal assembler info (for debugging asm.c). This option may become
disabled in the future. Generally speaking, this option will cause the
“instruction list” to be printed. This is the internal representation of all
instructions after the source file has been read in and parsed.	

This option will also cause .skip instructions with extremely large values to be
treated differently. Such instructions occur in the test files; with this option
long runs of 0x00 will not be written out to the object file.	

-d2

Print internal assembler info (for debugging asm.c). This option may become
disabled in the future. Generally speaking, this option will print info tracing
the ProcessSynthetics algorithm.	

The Linker Tool	

The linker tool is a program named “link”. A simple use is:	

link hello.o -o hello

At least one object file (such as “hello.o”) is required.	

The executable file that is to be produced (e.g., “hello”) must also be specified. The “-
o” option must be followed by the filename of the executable.	

A more typical example includes several object files and libraries:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	219 284

Appendix 2: Command Line Tools	

link hello.o fred.o myLib.lib math.lib -o hello

The following command line options may be given in any order:	

-h

Print information describing the command line options, which is roughly
identical to the information in this section. All other options are ignored and
the tool terminates immediately.	

filename	

One or more input files must be specified on the command line. Each is
assumed to be either a “.o” object file or a “.lib” library file. They may be given
in any order. There must be at least one object file specified.	

-o filename

The name of the file to be created is required. If the file already exists, it will
be overwritten.	

-k

If this option is present, all code and data segments will be placed in the
kernel address space. Otherwise, they will be placed in the user address
space.	
	 	 From	 To	
	 Kernel Address Region:	 0x0_0000_0000 0x3_FFFF_FFFF	
	 User Address Region:	 0x8_0000_0000 0xF_FFFF_FFFF	

-s

This option causes the linker to print out the internal symbol table and other
information about the linking process. The output should be viewed in a
fixed-width font.	

-s1

This option causes the linker to print out an overview of memory usage for
the resulting executable file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	220 284

Appendix 2: Command Line Tools	

-s2

The linker will add information to the executable file that is intended only to
be used by a debugger tool. This option will print out this information in
human-readable form. This option is independent of option -s; they each
print different information. The output should be viewed in a fixed-width
font.	

-w

This option will suppress all warning messages. It is equivalent to “-w1 -w2
…”. If -w is used, the others (-w1, -w2, …) must not be used.	

-w1

When synthesizing some instructions (e.g., JUMP, LOADx, STOREx, Bxx), the
linker will compute the target address. If the value is not within the legal 36
bit range, (i.e., not within 0x0 … 0xF_FFFF_FFFF) the linker will print a
warning and ignore the upper 28 bits.	

The -w1 option causes the linker to suppress this warning.	

-w2

When synthesizing some instructions, the linker may occasionally insert a
NOP instruction after the machine code translation. If this occurs, a warning
will be printed.	

The -w2 option causes the linker to suppress this warning.	

The insertion of a NOP is a side-effect of the algorithm and does not indicate
an error. It can occur when a forward JUMP initially required two machine
code instructions; later, the translation of other instructions can move the
JUMP forward, suddenly making a single machine code instruction adequate.
To ensure algorithm termination, the translations can only grow, never
shrink. The NOP should be harmless, aside from a small impact on execution
speed.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	221 284

Appendix 2: Command Line Tools	

-w3

Normally variables should be placed in a segment marked “writable, but not
executable”. Code should be placed in a segment marked “executable, but not
writable”. Read-only constants can go into either a code segment marked
“executable, but not writable” or a segment marked “not executable and not
writable.”	

A segment marked “executable and writable” is unusual and is not
recommended. Programs that are able to modify themselves make life much
easier for malware. Such segments are discouraged and a warning will be
generated if the linker encounters such a segment.	

The -w3 option causes the linker to suppress this warning.	

-shownop

Prints a warning whenever a NOP is inserted..	

-dXXX

Options of this form (such as -d and -d4) were used during debugging of the
linker tool itself. They cause the printing of various internal data structures.
These options are not useful to users and may be disabled in the future. For
details, consult the source code of the linker tool.	

The “createlib” Tool	

To create a new library file, a tool named “createlib” is used. For example:	

createlib sin.o cos2.o sqrt.o log.o -o math.lib

At least one object file is required and there are typically many.	

The “-o” option must be followed by the filename of the output file. It is required.	

The following command line options may be given in any order:	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	222 284

Appendix 2: Command Line Tools	

-h

Print information describing the command line options, which is roughly
identical to the information in this section. All other options are ignored and
the tool terminates immediately.	

filename	

One or more input files must be specified on the command line. Each is
assumed to be a “.o” object file. There must be at least one object file
specified, and their order is irrelevant.	

-o filename

The name of the file to be created is required. If the file already exists, it will
be overwritten. It will typically end with “.lib” but this is not required.	

-s

Print the symbol table on stdout. A listing of each exported symbol and the
module that exported it is printed.	

The “dumpobj” Tool	

The “dumpobj” tool will read a file and print its contents in a human-readable form
on stdout. It can handle the following types of files:	

	 Object (.o) files	
	 Library (.lib) files	
	 Executable (a.out) files	
	 Load-and-go files	

The dumpobj tool understands the formats used in these files. It will read a file and
display the information in a form that is appropriate for the file type. This tool will
also do some error checking on the file and, if problems in the file are encountered,
the tool will print an error message and terminate. This tool will not modify any
files.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	223 284

Appendix 2: Command Line Tools	

The following command line options may be given in any order:	

filename	

The input source will come from this file. If an input file is not given on the
command line, the input will come from stdin. Only one input file is allowed.	

-h

Print information describing the command line options, which is roughly
identical to the information in this section. All other options are ignored and
the tool terminates immediately.	

-v

The “v” stands for “verbose”. Header information, symbol information, and
patch information is always printed. This option controls whether the data in
the segments is printed. If present, the instructions and data are also printed.	

The “hexdump” Tool	

The “hexdump” tool will read a file and print its contents on stdout. It can handle
any kind of file. The file contents will be printed both in hex and interpreted as
ASCII.	

For example, the following command:	

% hexdump hexdump.c

will produce this output:	

000000000: 2F2F 2054 6865 2042 6C69 747A 2D36 3420 // The Blitz-64
000000010: 2268 6578 6475 6D70 2220 546F 6F6C 0A2F "hexdump" Tool./
000000020: 2F0A 2F2F 2062 7920 4861 7272 7920 482E /.// by Harry H.
000000030: 2050 6F72 7465 7220 4949 490A 2F2F 2043 Porter III.// C
000000040: 6F70 7972 6967 6874 2032 3031 380A 2F2F opyright 2018.//
000000050: 0A2F 2F20 5468 6973 2070 726F 6772 616D .// This program
000000060: 2072 6561 6473 2061 2066 696C 6520 616E reads a file an

...

Blitz-64: Assembler and Linker / Porter	 	 Page of 	224 284

Appendix 2: Command Line Tools	

This tool will not modify any files.	

If the file happens to be a properly formatted UTF-8 file, then all ASCII characters
will be displayed, but all remaining Unicode characters will be replaced with dots on
the righthand side. This tool’s output is purely ASCII.	

For example, a file containing these characters:	

	 café, naïve, x←(2÷3)

will be displayed as:	

000000000: 6361 66C3 A92C 206E 61C3 AF76 652C 2078 caf.., na..ve, x
000000010: E286 9028 32C3 B733 29 ...(2..3)

The following command line options may be given in any order:	

filename	

The input will come from this file. If a file is not given on the command line,
the input will come from stdin. Only one input file is allowed.	

-h

Print information describing the command line options, which is roughly
identical to the information in this section. All other options are ignored and
the tool terminates immediately.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	225 284

Appendix 3: The Assembler Algorithm	

Introduction	

We next describe the assembler algorithm that translates the remaining synthetic
instructions into machine code instructions. Some synthetic instructions cannot be
translated until link time and these will remain untranslated. Those that can be
translated will be replaced with the correct machine instruction sequences.	

ProcessSynthetics	

The function in the assembler (i.e., in asm.c) which uses this algorithm is called
“ProcessSynthetics”.	

Before this function is called, the simpler synthetic instructions will have been dealt
with. Each remaining synthetic instructions will be one of	

	 Format-S1	
	 Format-S2	
	 Format-S3	
	 Format-S4	
	 Format-S5	
	 Format-S6	
	 Format-S7	

For each of these, the translation has a variable length. This means the synthetic
instruction may be expanded into several machine instructions. Possible
translations are:	

Blitz-64: Assembler and Linker/ Porter	 Page of 226 284

Appendix 3: The Assembler Algorithm	

	 4 bytes	 1 machine instruction	
	 8 bytes	 2 machine instructions	
	 12 bytes	 3 machine instructions	
	 16 bytes	 4 machine instructions	

The function that performs an individual translation is called
“SynthesizeInstruction”. It takes two arguments:	

	 • Instruction Pointer	
	 • wantAction	

Each instruction is represented with an instance of “struct Instruction”. All
instructions in the source code file are kept in a single linked list of these
Instruction objects.	

The “instruction pointer” points to an Instruction object in the linked list of
instructions. If translation is possible, this function will replace a single synthetic
instruction by one or more machine instructions.	

The “wantAction” parameter is a boolean. If TRUE, the translation will take place
and the instruction list will be modified. If FALSE, then no modifications will occur;
This happens when the function is being called to determine if synthesis could take
place, given the current conditions, and if so, how big the translation would be.	

The SynthesizeInstruction function will return an integer indicating success or
failure, and the size of the translation.	

	 -1	 FAILURE: 	There was a problem and the translation could not	
	 	 	 be done.	
	 4, 8, 12, 16	 SUCCESS:	 The size of the translation, in bytes.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	227 284

Appendix 3: The Assembler Algorithm	

Each instruction is represented with one Instruction object. The following fields on
Instruction are used by this algorithm:	

	 actualSize 	 The number of bytes required for this synthetic instruction	
	 	 	 Could be 4,8,12,16. -1 means variable/unknown/linker	
	 	 	 required.	
	 maximumSize 	 The maximum number of bytes required for this synthetic	
	 	 	 instruction. Could be 4,8,12,16. Set once and then used once	
	 	 	 we determine we can’t do anything with this instruction.	
	 myLC	 The offset of this instruction from the beginning of	
	 	 	 this domain.	
	 myDomain 	 Which domain this instruction is in.	

A “domain” is a sequence of instructions. All instructions in the sequence have an
exact, known size, except possibly the last instruction. Relative offsets within a single
domain can be computed with certainty.	

In general, the assembler does not know where in memory the linker will place each
segment.	

The .align instruction presents a unique challenge. Since the assembler doesn’t
know exactly where in memory the segment will be placed, it cannot determine how
many bytes will be inserted by the linker for each .align instruction. Thus, .align
instructions are like synthetic instructions that must be handled by the linker.	

[Prior to this algorithm, all “.align 2” and “.align 4” instructions were replaced with
“.skip 1/2/3” instructions, so they are gone. All remaining .align instructions —
that is, 8, 16, 32, or page — are treated as unknowable by this algorithm. Even if a
“startaddr=” is given for the segment, it will not be used for .align instructions, even
though we could, in theory, determine exactly how many bytes some .align
instructions would insert.]	

The last instruction in a domain will be either a synthetic instruction whose size we
cannot determine, an .align instruction, or the last instruction in a segment.
Every .begin instruction will cause a new domain to be started. Likewise, a new
domain will be started directly after a synthetic instruction whose size we cannot
determine, and after every .align instruction.	

Consider a synthetic instruction within some domain. The assembler can compute
the exact offset from that synthetic instruction to another location, as long as that

Blitz-64: Assembler and Linker / Porter	 	 Page of 	228 284

Appendix 3: The Assembler Algorithm	

location is in that domain. If the target location is in another domain, then the
assembler cannot determine the relative distance between them. (This is because
they are either in different segments or are separated by an .align or synthetic
instruction whose size we cannot determine.)	

Domains are identified by numbers and numbers are assigned sequentially so it is
easy to determine whether two domains are equal.	

If the exact starting locations of segments are given in the .begin instructions (using
“startaddr=“), then it might be possible to deduce the relative offset between two
locations in different segments. However, this algorithm will not handle relative
offsets between segments, even if they could, in theory, sometimes be inferred.	

First Phase	

In the first phase of the algorithm, we make the assumption that every synthetic
instruction will be translated. The best case assumption is that each segment will be
reduced to a single domain.	

In this case, some synthetics will simply be impossible to translate, because they rely
on imported symbols. In the first phase, we will identify these synthetic instructions
and immediately give up on them. We will assume these will take the maximum size,
and we will use a negative number (-4, -8, -12, or -16) to indicate that they cannot be
translated.	

However, for the remainder of the synthetic instructions, there is some hope that we
will ultimately be able to translate them. So we will begin by assuming those
synthetic instructions can be translated with only one (4 byte) instruction.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	229 284

Appendix 3: The Assembler Algorithm	

	 // Initialize domain and myLC...	
	 LOOP thru the instruction list...	
	 	 Place each segment into a single domain	
	 	 Set “actualSize"	
	 	 	 For machine instructions, use the exact size (i.e., 4 bytes)	
	 	 	 For synthetics and .align, use the maximum possible sizes	
	 	 Also set "myDomain" and “myLC” for each instruction.	
	 	 For symbols used as labels, set their “domain” and “offset” fields.	

	 // Determine which synthetics are simply not translatable...	
	 LOOP thru the instruction list; look only at Format S instructions.	
	 	 Call "SynthesizeInstruction" — with arg “wantAction” = NO	
	 	 	 Get a size for this instruction, or -1 if not synthesizable.	
	 	 	 If we get a number, save it in "maximumSize", for later.	
	 	 	 Otherwise if we get -1, set "actualSize" to -(maxSize for this	
	 	 	 	 type of instruction)	
	 	 	 If size is a number, set "actualSize" to 4, the minimum.	

The reason we must do it this way is shown by the following example:	

1 .import Undef
2 L3:
3 jump Undef # Unknown size - Can't synthesize
4 L4:
5 jump L3 # Size 4, but can't synthesize
6 L5:
7 jump L4 # Size 4, can synthesize

The jump on line 3 cannot be synthesized. However, it can be 8 bytes at most, which
is the maximum size for any JUMP instruction. Since the distance from the JUMP on
line 5 to “L3” is small, the assembler can determine that the JUMP on line 5 will
require exactly 4 bytes. But the assembler can’t know exactly what that distance is,
so it can’t synthesize the JUMP on line 5. Since the assembler knows the size of the
JUMP on line 5, if not the exact value, it can synthesize the JUMP on line 7.	

The information we pass to the linker is:	

	 The linker must synthesize the JUMPS on lines 3 and 5.	
	 	 The jump on line 3 can be any size.	
	 	 The jump on line 5 will take exactly 4 bytes.	
	 The jump on line 7 has already been synthesized; the linker will ignore it.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	230 284

Appendix 3: The Assembler Algorithm	

Second Phase: Relaxation	

The second phase of the algorithm is essentially a “relaxation algorithm”. We have
previously set the size of every synthetic instruction that might be synthesizable to 4
bytes. Each “slot” is set to the minimum size and will gradually be enlarged until
every slot is large enough to accommodate the translation.	

First, we go through and assign addresses to all instructions and labels. We also re-
assign domains.	

Then, given the assignment of addresses and domains, we determine which
synthetic instructions can actually be synthesized in the amount of space we have
set aside for them. In some cases, the 4 bytes will be enough. However, for some, we
may need more than 4 bytes. If so, we increase the number of bytes to accommodate
the translation.	

Then, if any synthetic instruction required more bytes than we had initially counted
on, we need to repeat. We keep repeating until nothing further changes.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	231 284

Appendix 3: The Assembler Algorithm	

	 somethingChanged = TRUE	
	 LOOP WHILE (somethingChanged)	
	 	 somethingChanged = FALSE	

	 	 // Re-assign LCs...	
	 	 LOOP thru instruction list	
	 	 	 Set “myLC” based on “actualSize”	
	 	 	 Set “myDomain”	
	 	 	 	 For .begin and .align, start a new domain	
	 	 	 	 Otherwise, create one domain per segment 	
	 	 	 For symbols used as labels, set their “domain” and “offset”	

	 	 // Check that "ActualSize" is adequate and enlarge as necessary...	
	 	 LOOP thru instruction list; look only at format S instructions.	
	 	 	 If “actualSize” > 0	
	 	 	 	 Call SynthesizeInstruction() — with arg “wantAction” = NO	
	 	 	 	 If returned value == -1	
	 	 	 	 	 It was synthesizable before, but now it can't be.	
	 	 	 	 	 Set “actualSize” = saved “maximumSize”.	
	 	 	 If newSize > “actualSize”	
	 	 	 	 “actualSize” = newSize	
	 	 	 	 somethingChanged = TRUE	
	 END WHILE LOOP	

[Since we are enlarging the slot sizes on each iteration and there is a maximum
possible slot size (12 bytes), this repeat-until-no-changes loop will terminate. Most
likely, the first iteration will determine the sizes we need and a few synthetic
instruction slots will be enlarged to whatever is actually needed. In the second
iteration, there will likely be no changes and the looping will be done. However, it is
possible that the growth of one slot will have the consequence of moving two other
things a little farther apart, requiring some other instruction that previously
required 4 bytes to suddenly pass a threshold and require 8 bytes. In some
pathological case, there might several iterations.]	

In the fourth phase, the algorithm will again run through the instructions and
assign locations to everything. Then it will loop through the instructions and
actually perform the translations. We have already determined how many bytes are
required, so we know when the translation can be done and how big it will be.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	232 284

Appendix 3: The Assembler Algorithm	

	 // Assign accurate LCs...	
	 LOOP thru instruction list	
	 	 Set “myLC” based on “actualSize”	
	 	 Set “myDomain”	
	 	 	 For .begin and .align, start a new domain	
	 	 	 If “actualSize” < 0, then start a new domain	
	 	 For symbols used as labels, set their “domain” and “offset”	

	 // Perform the transformations...	
	 LOOP thru instruction list; look only at format S.	
	 	 If “actualSize” > 0	
	 	 	 Call SynthesizeInstruction() — with arg “wantAction” = YES	
	 	 	 If returned size == -1	
	 	 	 	 Ignore; the target moved to a different domain	
	 	 	 If returned size ≠ “actualSize”	
	 	 	 	 ProgramLogicError	

In the final step, we may make one last pass through the instructions to set the
addresses and sizes so everything is consistent. In particular, we allocate zero bytes
for all .align instructions (which the linker may increase) and 4 bytes for every
remaining untranslated synthetic instruction (which the linker may increase).	

	 // Finalize the “actualSize” and “LC” values…	
	 LOOP thru the instruction list	
	 	 For remaining synthetics, set “actualSize” to 4 bytes.	
	 	 For .align, set “actualSize” to 0 bytes.	
	 	 Set “myLC” based on “actualSize”	

BUGS AND PROBLEMS: We still have some issues that need attention.	

After this algorithm, actualSize will be…	
	 Negative (-4, -8, -12, -16)… indicates a mandatory size	
	 4 = no assumptions about size were made.	

In the code, we consider expanding a synthetic instruction into a larger sequence.
Right now, the code in SynthesizeInstruction always assumes the slot size is 4. It
adjusts the offset if the target is BEFORE the synthetic but not AFTER. This is
because it will be inserting an instruction.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	233 284

Appendix 3: The Assembler Algorithm	

Furthermore, it determines whether the adjustment is needed by looking to see if
the target is in the current or following domain. We have changed things so that the
target is always in the same domain.	

It’s possible that the slot size is 8 and is being enlarged to 12 (or from 12 to 16).
Furthermore, the test about whether the adjustment is needed is wrong.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	234 284

Appendix 4: The Linker Algorithm	

Quick Summary	

• A specific implementation of the linker tool is described.	
• The code in the C program “link.c” is documented.	
• This appendix can safely be ignored unless there is a bug in the linker.	
• This appendix may be separated out into a separate document in the future.	

Introduction	

The linker tool is a C program named “link.c” and the executable is named “link”.
The C code includes some standard C libraries and some additional C code from
BlitzSupport.c. The command line parameters are documented elsewhere. The
program terminates with a standard Unix/Linux error code (EXIT_FAILURE,
EXIT_SUCCESS).	

Error messages and warnings go to the stderr output. Additional information may
be printed for error and warning messages and this goes to stdout. Several
command line options (such as -s and the various -d debugging options) print
output which goes to stdout.	

The following files contain all the linker code:	

	 link.c	
	 BlitzSupport.c	
	 CheckHostCompatibility.c	

There are no .h header files, which is somewhat atypical of Linux/Unix coding style.	

The file BlitzSupport contains a number of functions that are used by the linker, as
well as other tools in the Blitz project, such as the assembler and the emulator.	

Blitz-64: Assembler and Linker/ Porter	 Page of 235 284

Appendix 4: The Linker Algorithm	

The CheckHostCompatibility.c file contains a function named
CheckHostCompatibility which tries to ensure that all assumptions about the host
(e.g., byte-order, word size, and C “implementation dependencies”) are as expected.
This function is called once at startup and any problems cause an immediate halt.	

In addition, the following well-known Linux/Unix “includes” are used:	

#include <stdlib.h>	
#include <stdio.h>	
#include <stdarg.h>	
#include <string.h>	
#include <errno.h>	

The linker primarily relies on the following “C” types, as well as pointers, arrays, and
structs.	

int	 32 signed integers	
int64_t	 64 bit signed integers	
char	 bytes: 8 bit quantities	
FILE *	 For file I/O	

For boolean values, we use type int and use 0 and 1 for FALSE and TRUE.	

All sizes and lengths are in terms of bytes, and never in terms of words or
doublewords.	

I have a tendency to avoid defining constants with #define and tend to specify the
value directly. I do this because I have lost too many debugging hours because I
made incorrect assumptions about the value of a “constant”.	

Linux/Unix system functions that are most heavily used are:	

calloc	
free	
fopen	
fclose	
fread	
fwrite	
fseek	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	236 284

Appendix 4: The Linker Algorithm	

feof	
perror	
errno (a variable)	
exit	
printf	
fprintf	

The following functions are also used in other Blitz tools:	

strlen	
strcmp	
fscanf	
putchar	
fread	
fwrite	

The most common formatting codes used in printf are:	

%d	
%lld	
%x	
%llx	
%s	
%c	

The program is compiled with a make file named “makefile”, which contains
roughly these lines:	

CheckHostCompatibility1.s: CheckHostCompatibility.c
gcc -g -std=c99 -Wall -DBLITZ_HOST_IS_LITTLE_ENDIAN \

-DWithoutOpt CheckHostCompatibility.c \
-S -o CheckHostCompatibility1.s

CheckHostCompatibility2.s: CheckHostCompatibility.c
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \

-DWithOpt CheckHostCompatibility.c -S \
-o CheckHostCompatibility2.s

link: link.c BlitzSupport.c checkHostCompatibility1.s \
checkHostCompatibility2.s

gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \
-lm link.c checkHostCompatibility1.s \

Blitz-64: Assembler and Linker / Porter	 	 Page of 	237 284

Appendix 4: The Linker Algorithm	

checkHostCompatibility2.s -o link

Error Handling	

The program often performs internal consistency checks and calls function
ProgramLogicError if anything is wrong. The program also performs checks to
make sure the input is well formed and error-free. If anything is amiss, it calls one of
the functions: FatalError, FatalErrorInFile, or FatalErrorInModule. All of these
functions print a message and terminate the program immediately.	

Other types of errors are not fatal and the linker will keep going. In these cases, it
prints an error message to stderr. There is a counter named errorCount which is
incremented. Later, this counter is used to determine whether the program should
return EXIT_FAILURE or EXIT_SUCCESS. The program also prints warning messages
and there is a counter named warningCount which is incremented every time a
warning is printed.	

At certain moments, the program will call a function named CheckForAbort, which
will take a look at errorCount and immediately terminate the program if any errors
have been encountered. This prevents earlier errors from possibly leading to
inconsistent data structures that might cause serious confusion or program logic
errors in later stages of processing.	

If the program terminates due to errors, it will remove the output file it created, if it
was created.	

Pointers and Objects	

There are a number of types of objects created by the linker:	

InFile	 one per input file	
Module	 one per .o file; one per library module	
Segment	 one per .begin statement	
Symbol	 one per symbol exported or imported	
Patch	 one per patch entry in an input module	
TableEntry	 one per exported symbol in a library	
Region	 one per chunk of memory (containing one or more segments)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	238 284

Appendix 4: The Linker Algorithm	

For each of these, there is a “C struct” with a number of fields.	

Sometimes, we refer to structs as “objects”. (Of course since the linker is a C
program, there is no subclassing relationship involved.)	

Many objects contain fields pointing to another object. For example, each Segment
object contains a field named myModule, which points to the object representing
the module which contains this segment. Likewise, each Symbol contains a field
named usedInModule, which contains a pointer to the module that defined that
symbol. And each Patch object contains a field named segment, which contains a
pointer to the segment where that patch is to be applied.	

This input files read by the linker (the object files and library files) identify things by
number. For example, every segment in a module is numbered. Likewise, every
symbol is numbered.	

Initially, the linker will enter segments and symbols into arrays and use the array
indices to locate the objects. But later, once the linker has identified the object by
number, it will refer to in with a pointer.	

There are a number of linked lists. Mostly, the linked lists are singly linked, with a
“next” pointer. An exception is the list of Region objects, since it is necessary to
insert objects into the middle of the list. The list of Regions is doubly linked, with
fields named next and prev.	

Most linked list are headed by a pointer to the first element. An example is the global
list of all segments in the executable, which is pointed to by a variable named
segmentList.	

However, some linked lists have to be constructed in order, so the new elements
have to be added at the tail end. Examples are	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	239 284

Appendix 4: The Linker Algorithm	

	 The list of input files:	
	 	 firstInfile	
	 	 lastInfile	
	 The list of modules:	
	 	 firstModule	
	 	 lastModule	
	 The list of symbols:	
	 	 symbolList	
	 	 symbolListLast	
	 The list of patches:	
	 	 patchList	
	 	 patchListLast	

The list of Region objects is handled differently. This doubly-linked list is
maintained as a circular list. In other words, the are no NULL pointers among the
next and prev pointers. Instead, there is a special dummy “header” Region object,
which does not represent a valid region. The next pointer of the header points to the
first real region. The prev pointer of the header points to the last real region. The
global variable regionHeader points to the special dummy region. Region objects
also contain a field (regionStatus) to tell what sort of region it is; a special value
(-1) is used to identify the dummy header object.	

Print Routines	

There are a number of functions which will send characters to stdout. These
functions are useful in debugging link.c and for printing information during normal
operation, e.g., for the “-s” option.	

PrintLExportedIndex ()	
PrintLibraryIndex ()	

PrintSymbolList ()	
PrintSymbolHeader ()	
PrintSymbol (Symbol * sym)	

PrintSegmentList ()	
PrintSegmentSublist ()	
PrintSegment ()	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	240 284

Appendix 4: The Linker Algorithm	

PrintModuleList ()	

PrintPatchList ()	
PrintPatch (Patch * pat)	
PrintPatch2 (Patch * pat)	
PrintPatch3 (Patch * pat)	

PrintRegionList ()	
PrintRegion (Region * reg)	

DumpAllDataStructures ()	

The print functions always leave the data structures unchanged. In some cases, the
functions check for errors in the data structures and abort the linker if any errors
are detected.	

The source code for link.c contains a lot of print statements that have been
commented out. These were used during debugging and they have been left in to aid
future debugging. These print statements may help the reader, since some of them
effectively serve as comments.	

Additionally, for some error conditions, the code may call a print functions, which
will additional useful information to be printed, before producing the error
messages itself.	

The function DumpAllDataStructures is invoked by the -s command line option, as
well as some of the debugging options.	

DumpAllDataStructures ()	
This function begins by renumbering the symbols, segments, and regions. Initially
symbol and segment numbers are local to the input .o modules; after
renumbering, every symbol and every segment will have a unique number,
making the numbers meaningful to humans.	

This function then prints:	
	 A table with one line per module	
	 A table with one line per symbol	
	 A table with one line per symbol (grouped by segment)	
	 A table with one line per patch	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	241 284

Appendix 4: The Linker Algorithm	

	 A table with one line per region	
	 A table with one line per segment	

Before we print things, we renumber the everything, which is useful in the
debugging printouts.	

RenumberSymbolsSegmentsAndRegions ()	
Run through all symbols, segments, and regions. Re-assign identification
numbers.	

Segment numbers will start at 1. Any and all dummy zero-filled segments will be
numbered -1.	

Recall that each input file numbered the symbols 1, 2, 3, …, the numbers were not
unique; each file will have a symbol #1, etc. We abandon the numbers that were
used in the original files. After reading in the input and creating the data structures,
we identify Symbols by objects and pointers.	

However, the numbers are very needed in the debugging printout.	

This function also assigns a number to each segment (1, 2, 3, …) and a number to
each region (1, 2, 3, …). 	

Initialization	

Upon startup, the program calls a function named CheckHostCompatibility to
make sure some basic assumptions (word size, byte-ordering, etc.) are met.	

Next, some internal data structures are initialized.	

The “library index” is a hash table that will map the exported symbols in a library
to the modules in that library that exported them. It is initialized.	

The “export index” is a hash table that will map the exported symbols from any
module included in the output program to the internal representation for that
symbol. It is initialized.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	242 284

Appendix 4: The Linker Algorithm	

Next, the command line is processed by a function named ProcessCommandLine. If
the “-h” (help) option is present, this function prints the help info and terminates the
program. Some options are flags (either present or absent). For such options, we set
the following variables to TRUE or FALSE:	

commandOptionS	 -s	
commandOptionK	 -k	
commandOptionD1	 -d1	
commandOptionD2	 -d2	
commandOptionD3	 -d3	
commandOptionD4	 -d4	
commandOptionD5	 -d5	
commandOptionD6	 -d6	
commandOptionD7	 -d7	
commandOptionDsmall	 -small	
commandOptionW1	 -w1	
commandOptionW2	 -w2	
commandOptionW3	 -w3	
commandOptionW	 -w	

The following options are used only for debugging the linker. They result in printing
additional information during the linking:	

-d1	 Print all data after files read in, before the main algorithm	
-d2	 Print all data after algorithm finishes placement and patches	
-d3	 Print a trace during segment placement (implies -d1 & -d2)	
-d4	 Print a trace during equate processing	
-d5	 Print a trace during the synthesizing of patches	
-d6	 Print a trace during region rounding	
-d7	 Print a trace during output file creation	
-dsmall	 Set memory size to 0x1,0000 = 4 pages	

There must be exactly one output filename following “-o”. This file is opened for
writing as the variable outputFile (of type FILE *). There will be a number of input
filenames. For each, we create an InFile data structure. Each Infile contains a “FILE
*” and we open each input file and determine whether it is a library or an ordinary
object file by reading its magic number.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	243 284

Appendix 4: The Linker Algorithm	

The InFile Data Structure	

There is a linked list of InFile structures, with one per input file. There is one InFile
struct for every .o file and one for every .lib file.	

The variable firstInfile points to the first and lastInfile points to the tail of the list.
The name of the original file is retained for use in error messages. The filenames are
also placed into the output file.	

[qqqq Verify that the previous sentence is true. This code is not yet written. ????]	

struct InFile {
 char * filename; // The name of an input file
 FILE * filePtr; // The input file
 int isLibrary; // 1 = this is a .lib file; 0 = .o file
 InFile * next; // Next pointer in linked list
};

Functions for Reading and Writing	

There are a number of support functions used to read data from files. These
functions are located in BlitzSupport.c:	

ReadByte (FILE *) —> int	
ReadInteger16 (FILE *) —> int	
ReadInteger32 (FILE *) —> int	
ReadInteger64 (FILE *) —> int65_t	

We use this notation as shorthand to describe functions, along with their arguments
and return values.	

There are a number of functions used to write to the output file. These functions are
located in link.c:	

WriteInteger8 (int)	
WriteInteger16 (int)	
WriteInteger32 (int)	
WriteInteger64 (int64_t)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	244 284

Appendix 4: The Linker Algorithm	

Reading the Input Files	

In the next step (in the main function), we run through the linker list of input files
and read each file. The file is either a normal (simple) object file containing a single
module, or it is a library file.	

If the file is a simple object file, we create a Module structure and add it to the list of
Module objects.	

If the input file is a library, we create a single Module object for each module in the
library. However, we do not add it to the linked list of Modules. The linked list is for
modules that will definitely be included in the output file; at this stage we can not
assume that any library module will be added to the output file.	

Instead, we read through all the exported symbol names for a module. For each
symbol, we add the name to the Library Index. The Library Index maps symbol
names to Module objects. We call a function named AddToLibraryIndex to do this.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	245 284

Appendix 4: The Linker Algorithm	

The Module Structure	

One Module object is created for every input file. A library will contain one or more
modules and one Module object will also be created for each module in the library.	

struct Module {
 char * moduleName; // The name of the original .o file
 int moduleNumber; // Sequential number (assigned
 // when created)
 char * filename; // The name of the input file
 FILE * filePtr; // The input file containing this module
 int64_t startingLoc; // Where in the file this module begins

// (after magic number)
 Module * next; // Next pointer in linked list
 char * sourceFilename; // The name of the original .s file
 int numberOfSegments; // Number of segments in this module
 int numberOfSymbols; // Number of symbols in this module
 Symbol * * symbolArray; // Ptr to an array of ptrs to symbol
 // objects
 Segment * * segmentArray; // Ptr to an array of ptrs to segment
 // objects
};

Each module has a name (such as “Hello.o”) and this name is stored in the object.
Each module come from a file: either a simple object file or from a library file. The
Module object contains information (filePtr, startingLoc) about where the module
can be found.	

Module objects are kept in a linked list. The variable firstModule points to the head
of this list and lastModule points to the tail. The field next is used for this linked
list. This linked list is a list of all modules that will go into the output file.	

Each module originated in an assembly language program “.s” file. The name of this
file is retained as sourceFilename. The filename is used in printing error messages.	

A module consists of a number of “segments”. Recall that each segment was
introduced in the assembly file with a “.begin” pseudo-op. The linker must process
each segment (e.g., finding a place for it in memory) and, for each segment in the
module, a Segment object will be created. The module’s segments are pointed to by
an array named segmentArray. We also maintain a field named
numberOfSegments so we can run through the array in order.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	246 284

Appendix 4: The Linker Algorithm	

The segments are numbered in order (1, 2, 3, …) starting with 1. To make the
segmentArray indices match the segment numbers, the array will contain an extra
unused entry for index 0. As a result, the size of the array is numberOfSegments+1.	

Each module will define a number of symbols and for each one we will create a
Symbol object. The module’s symbols are pointed to by an array named
symbolArray. We also maintain a field named numberOfSymbols so we can run
through the array in order.	

Just like the segment, the symbols are numbered in order (1, 2, 3, …) starting with 1.
To make the symbolArray indices match the symbol numbers, the array will contain
an extra unused entry for index 0. As a result, the size of the array is
numberOfSymbols +1.	

Hash Tables: Library Index and Exported Index	

There are two dictionaries mapping string names to objects. One is called the
“Library Index” and the other is called the “Exported Index”.	

Both mappings are implemented as hash tables that map string names into objects.
The Library Index maps string names into TableEntry objects. The Exported Index
maps string names into Symbol objects.	

Both mappings are organized identically. Here we will discuss the organization of
the Exported Index, but the Library Index is the same.	

Each Symbol object contains a variable length string. The fields of relevance from
the Symbol object are stringLength and stringChars. The Symbol object is
described elsewhere and we will ignore the remaining fields in our description of
the hash table.	

We assume that string names may contain an arbitrary sequence of characters,
possibly including embedded NULL \0 bytes, so we use a string length for the
number of bytes in the name, rather than use the NULL-terminated scheme typically
used in Unix/Linux.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	247 284

Appendix 4: The Linker Algorithm	

The key functions are	

void AddToExportedIndex (Symbol * sym)
Symbol * SearchExportedIndex (Symbol * sym)

To add an element to the mapping, we first create a new Symbol object and then call
AddToExportedIndex. If there is already an entry in the mapping with the same
symbol name, this function will print an error message.	

Not all Symbol objects will be added to the mapping. In particular, we will only add
symbols that have been exported to the mapping. In the case of imported symbols,
we will have a Symbol object and we need to search the mapping to see if it contains
another Symbol with the same name. This test is done with the
SearchExportedIndex function.	

To search the mapping, we take the name and compute a hash value from the bytes.
This computation is performed by a function named ComputeHash. The
ComputeHash function lives in BlitzSupport.c since it is used in other Blitz-64
programs.	

The mapping is implemented as an array of pointers. Each pointer points to a linked
list of Symbol objects. Each Symbol object contains a field named
exportedIndexNext, which is used for this linked list.	

To find an element, we compute the hash value and then use it (mod array size) as
an index into the array. This gives us a pointer to a linked list. Then we perform a
linear search on the linked list.	

The array size is defined by this constant, such as:	

#define HASH_TABLE_SIZE 4999

This number can safely be enlarged, but you should always use a prime number.	

Assuming that a typical program uses 2,000 exported symbols, most linked lists will
not be longer than one element. Thus, the first object we test is highly likely to be the
match we are looking for. To handle larges programs with good performance, this
constant has been increased to an even larger number.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	248 284

Appendix 4: The Linker Algorithm	

The Library Index is similar, except that it maps string names into TableEntry
objects.	

struct TableEntry {
 TableEntry * next; // Linked list for each hash value
 Module * exportedFromModule; // The module that exported this symbol
 int stringLength; // Number of characters
 char stringChars[0]; // The characters
};

Recall that a library file contains a number of modules and each module exports a
number of symbols. Each library life begins with an index telling which symbols are
exported and which module exported them. First, the linker must first read in all the
library files and enter each exported symbol into the Library Index. Later, as the
linker is building the output file, it may encounter an imported symbol. The linker
will then search the library index to find the symbol. After retrieving a TableEntry
object, the linker can determine (using the exportedFromModule field) which
module from the library to add to the growing output file.	

When adding symbols to the Library Index (in AddToLibraryIndex), we check to
make sure that there is not already an entry there and print an error message if
necessary.	

The Library Index is built first, as the input files are processed and library files are
encountered.	

The Module List	

At this point (within function main) we have already run though the input files. We
have already built the ModuleList, adding one Module for each .o file and we built
the Library Index as we encountered .lib files.	

In the next step, we will enlarge the Module List so that it will contain all the
modules that need to go into the output file.	

Initially, the list contains only modules that came from .o files, but we may need to
bring in additional modules from library files. Whenever a module imports a symbol
that is otherwise undefined, we will search the Library Index looking for a module

Blitz-64: Assembler and Linker / Porter	 	 Page of 	249 284

Appendix 4: The Linker Algorithm	

that exported that symbol. If one is found, the corresponding module will be added
to the Module List.	

Otherwise if there is no entry in the Library Index, an error will be generated.	

Reading the Modules: AddNewModule	

A function named AddNewModule is called once for each module that will go into
the output file. The AddNewModule function will go the file that contains the
module (either a .o object file or a .lib library file) and will read in the header
information describing that module. The function will add information to the
growing data structures.	

void AddNewModule (Module * mod)

The Module object contains information about which file contains the module and
where in the file the module begins. This function begins by reading the header
information (number of segments, number of symbols, source file name).	

Each module will define a number of symbols. The AddNewModule function will
allocate an array (symbolArray, in the Module object) with one element per
symbol. For each symbol in the module, we will create and initialize a Symbol
object. Furthermore, if the symbol is exported, this function will add the symbol to
the Exported Index.	

Each module will also contain a number of segments. The AddNewModule function
will allocate an array (segmentArray, in the Module object) with one element per
segment. For each segment in the module, this function will create and initialize a
Segment object.	

Each module will contain a number of patches. For each patch in the module, the
AddNewModule function will create and initialize a Patch object. Every Patch
object will be on exactly two linked lists. There is one linked list for each module and
there is a global linked list of all patches.	

The AddNewModule function will not read in the actual data bytes for the segment,
since that information will not be needed until later, when we are ready to build the
output file.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	250 284

Appendix 4: The Linker Algorithm	

Before we continue describing the initialization algorithm in function main, we will
describe the primary data structures used in the linker.	

The Segment, Symbol, and Patch Objects	

Next, we discuss the data structures that are used to represent the information
contained in the modules that are to be linked together. Generally speaking, these
data structures are allocated, set up, and initialized by the function
AddNewModule.	

struct Segment {
 Segment * next; // For the linked list of all segments
 // in executable
 Segment * nextForRegionList; // For the linked list of all segments
 // in a region
 Segment * subListNext; // For segmentList0, ...4, ...5, ...6, ...7
 Module * myModule; // The module from which this segment came
 int64_t locationInFile; // Location in file where segment data
 // bytes are located
 int segNumber;
 int lineNumber;
 int64_t initialLength; // Size in bytes (as given in .o module)
 int isKernel;
 int isExecutable;
 int isWritable;
 int isZerofilled;
 int64_t startAddr;
 int64_t gpValue;
 Patch * patchList; // The patches that apply to this segment
 Patch * patchListLast; // .
 Symbol * labelList; // The labels that are in this segment
 int64_t currentAddr; // Where the segment is placed in memory
 int64_t currentLength; // How big is this segment, in bytes
 // (may not be a multiple of 8)
 int64_t paddingAdded; // Number of bytes (0..7) added to bring
 // segment size up to multiple of 8
};

Blitz-64: Assembler and Linker / Porter	 	 Page of 	251 284

Appendix 4: The Linker Algorithm	

struct Symbol {
 Module * usedInModule; // The module from whence this symbol came
 int symbolNumber; // The number of the symbol (1, 2, ...)
 int lineNumber; // Source file line number
 int symbolType; // 1=IMPORTED, 2=LABEL, 3= EQUATE
 Segment * segment; // Only for type 2 (LABEL)
 int64_t offset; // LABEL: offset from segment start;
 // EQUATE: offset from relativeTo
 // symbol, or absolute value
 // IMPORT: unused (zero)
 int relativeTo; // Only for type 3 (EQUATE);
 // 0 means "absolute" &
 // offset is the value
 // IMPORT, LABEL: unused (zero)
 int exported; // Only for type 2 (LABEL) and
 // type 3 (EQUATE)
 Symbol * target; // Type 1/IMPORTED: ptr to exported symbol;
 // Type 3/EQUATE: ptr to relativeTo
 // or NULL.
 Symbol * listNext; // For the linked list of all
 // symbols in executable
 Symbol * exportedIndexNext; // Linked list for each hash value
 // in ExportedIndex
 Symbol * nextForSegmentList; // There is also one linked list per
 // segment (labels only)
 int64_t currentValue; // For LABELs: the address; for EQUATEs:
 // the computed value
 int markFlag; // EQUATES only: 0 = not done yet;
 // 1=in progress;
 // 2=currentValue determined
 int stringLength; // Number of characters
 char stringChars[0]; // The characters
};

Blitz-64: Assembler and Linker / Porter	 	 Page of 	252 284

Appendix 4: The Linker Algorithm	

struct Patch {
 Patch * next; // For the linked list of all patches
 Patch * nextForSegmentList; // There is also one linked list per segment
 int patchType; // 1,2,3, ...
 int lineNumber; // Source file line number
 Segment * segment; // Segment where this patch must be made
 int64_t initialOffsetToPatch;// Offset into segment where patch
 // must be made
 int initialSize; // Number of bytes present in .o file
 // (0,4,8,12, or 16)
 Symbol * targetSymbol; // Target symbol (NULL = absolute)
 int64_t offsetFromTarget; // Offset from target symbol (often zero)
 // . For patch type = ALIGN, offset
 // will be 8,16,32,or 16384
 int exactSize; // Exact size of result in bytes
 // (4, 8, 12, 16) or -1 if don’t care
 // . Only for Format S1,S2, ... S7
 int sizeIncrement; // The number of bytes to be inserted
 // by the linker
 int64_t currentOffsetToPatch;// Offset into segment where the patch
 // will actually occur
};

Segment Objects	

There is a linked list containing all the segments that will be placed in the output file.
This list is pointed to by the global variable segmentList. The next field in a
Segment object is used for this list.	

Later, we will describe memory “regions”. The region concept is used when placing
segments in memory, i.e., when assigning addresses to segments. Main memory will
be divided into a sequence of regions. Each region will have a single set of attributes
(writable, executable). Each Region object will have a linked list of all the segments
in it. The nextForRegionList field in Segment objects is used for this linked list. For
now, this field is just initialized to NULL.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	253 284

Appendix 4: The Linker Algorithm	

Later, we’ll look at the attributes of a segment and add it to exactly one of the
following linker lists:	

segmentList0	 Linked list of all fixed segments	
segmentList4	 Linked list of segments that are not Executable, not Writable 	
segmentList5	 Linked list of segments that are not Executable, Writable	
segmentList6	 Linked list of segments that are Executable, not Writable	
segmentList7	 Linked list of segments that are Executable, Writable	

Each segment came from a module. The myModule field points to this Module
object.	

Segments are numbered within a module. The segNumber field contains this
number. Each segment is placed in the module’s segmentArray; the array index and
this field match. Patches refer to segments by number.	

The object file contains the line number on which the segment began. The
lineNumber field saves this information so it can be used in error reporting.	

The bytes for the segment (the data and machine code bytes) are in the file and are
not read at this time. The initialLength field tells how many bytes are in the file. The
linker may increase the size of segments (as a result of inserting bytes when
translating synthetic instructions or .align directives), so the segment size may grow.
However, the initialLength field remains unchanged.	

Each segment has these attributes: isKernel, isExecutable, isWritiable,
isZerofilled, startAddr, and gpValue. These are read in and stored in the Segment
object for later use.	

Each module will contain a number of patches. Each patch applies to one segment,
namely the segment containing the synthetic instruction or the .align pseudo-op.
Each Segment contains a list of Patch objects. This list is pointed to by the fields
patchList and patchListLast. As the patches are read in, they are added to the list
for whichever segment they apply to (in addition to the global patch list). The
patches are in order of increasing address, so the new Patch objects are added to the
tails of the lists.	

Of the symbols in a module, some are “labels”, which identify locations within a
particular segment. (Other symbols are “equates” and “imports”.) The labels for a
segment are kept in a linked list, and each Segment has a field named labelList

Blitz-64: Assembler and Linker / Porter	 	 Page of 	254 284

Appendix 4: The Linker Algorithm	

which will point to a linked list of Symbol objects. Each Symbol on this list will be a
label in this segment. Within the Symbol objects, there is a field named
nextForSegmentList which is used for this linked list.	

Later in the linking algorithm, each segment will be assigned an address in memory.
(Actually, the algorithm may try different addresses until it can fit everything in, so
the segment may be moved around.) The currentAddr tells where this segment will
be placed. At this stage, this field is merely initialized.	

The linker may grow a segment, and the currentLength field tells the current size of
the segment. At this stage, this field is merely initialized.	

Symbol Objects	

Each module contains a bunch of symbols. For each symbol, a Symbol object will be
created. The usedInModule field (in the Symbol objects) points to the Module that
contained this symbol.	

Modules identify symbols by number. Each symbol in a given module is numbered
(1, 2, 3, …). This number is used by patches and other symbols. The symbol number
is kept in the field symbolNumber.	

The lineNumber field tells where in the .s source code file the symbol was defined.
The source code line number is used in sorting the labels within each segment, in
addition to error reporting. 	

There are three different kinds of symbol: “Imported”, “Label”, and “Equate”. The
symbol type is identified but the field symbolType and corresponds to the way in
which the symbol was defined in the .s source code file. A number is used for
symbolType:	

	 1 = imported	
	 2 = label	
	 3 = equate	

Depending on what type of symbol it is, the following fields are used a bit differently.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	255 284

Appendix 4: The Linker Algorithm	

For imported symbols…	

	 symbolType	 1 = “imported"	
	 segment	 not used	
	 relativeTo	 not used	
	 offset	 not used	
	 exported	 not used	
	 target	 ptr to matching symbol, which was exported	

For label symbols…	

	 symbolType	 2 = “label"	
	 segment	 ptr to Segment in which this label occurs	
	 relativeTo	 not used	
	 offset	 offset into segment, in bytes	
	 exported	 1=exported; 0=not exported	
	 target	 not used	

Equate symbols can either be “absolute” or “relativeTo”. Initially, they can be
distinguished by the relativeTo field. Subsequently, they are distinguished by the
“target” field.	

An “absolute” symbol looks like this…	

	 symbolType	 3 = “equate"	
	 segment	 not used	
	 relativeTo	 not used (zero)	
	 offset	 The value	
	 exported	 1=exported; 0=not exported	
	 target	 NULL	

An “relativeTo” symbol looks like this…	

	 symbolType	 3 = “equate"	
	 segment	 not used	
	 relativeTo	 not used after initialization (a symbol number)	
	 offset	 An offset to be added in (often zero)	
	 exported	 1=exported; 0=not exported	
	 target	 A pointer to another symbol	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	256 284

Appendix 4: The Linker Algorithm	

There is a global list of all symbols, which is headed by symbolList and
symbolListLast. The next field is used for this linked list.	

A symbol can be exported. If the symbol is exported, then it will be added to the
Exported List, so that it can be located. (We’ll need to look symbols up in the index
whenever we have an imported symbol, so we can link an imported symbol to its
matching exported target.) The exportedIndexNext field is used in the hash table
linked lists for the Exported Index. If the symbol is not exported, then this field will
never get used.	

There is a linked list of all labels that appear in a segment. This list is pointed to by
the field labelList in the Segment object. If a Symbol is a label, then it will get
added to the linked list for the segment in which it occurs. The field named
nextForSegmentList is used for this purpose. If the Symbol is not a label, the
nextForSegmentList field will remain unused.	

We know the value of absolute symbols as soon as the segment is read in from a file,
but the value of labels will only be known later in the linking, after the segment has
been assigned an address in memory. And if one placement doesn’t work, the
segment will get moved to another memory address. Thus, the value of the symbol
may change. The field currentValue is only used for labels and will be changed
during the linking algorithm.	

With equated symbols, the symbol is defined in terms of some other symbol, called
the “relativeTo” symbol. The equate symbol can be defined as equal to the relativeTo
symbol, in which case the offset will be zero. Or the offset can be non-zero, in which
case we will need to add the offset to the value of the relativeTo symbol, once it is
known.	

At one point, we must determine the value of all equates. It is always possible that
equates can be circularly defined. Cyclic definition is an error; we must be able to
process the equates and assign a value to each. The field markFlag is used when
assigning values to the equates.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	257 284

Appendix 4: The Linker Algorithm	

Patch Objects	

A “patch” indicates that the linker will need to modify the code generated by the
assembler in some specific location in a segment. There are two reasons that the
linker will need to perform patching.	

The first type of patch is for a synthetic instruction which could not be translated by
the assembler. This could happen when the assembler was unable to determine the
target address for the instruction.	

The second reason the linker must take action is for .align pseudo-ops. Since the
assembler doesn’t know where exactly the segments will be placed in memory, it is
unable to know how many bytes to insert to achieve the required alignment. In
addition, there may also be uncompleted synthetic instructions preceding the .align
again making it impossible for the assembler to know how many bytes to insert to
achieve the required alignment.	

The will be one Patch object for each required patch and all Patch objects will be
allocated in the AddNewModule function. Associated with each module is a list of
patches that must be made to the segments in that module. For every module that
will be included in the output file (i.e., for every module in a .o input object file and
for every module pulled in from a library file), there will be a separate list of
Patches. These lists will be built by AddNewModule.	

Each Patch object will actually sit on two linked lists. First, there is a global linked
list of all Patch objects. This list is pointed to by the global variables patchList and
patchListLast, and each Patch object contains a next field for this global linked list.	

In addition, each Patch applies to a particular location within some segment. Each
segment contains its own list of Patch objects. Each Segment object contains fields
called patchList and patchListLast which point to the head and tail of the
segment’s private list. Every Patch object will be on exactly one of these private lists.	

These private per-segment patch lists are in non-decreasing order, by the offset that
needs to be patched. Fortunately, the assembler will add the patches to the object
files in order, so all the linker does is verify the correct ordering is followed. 	

Each Patch contains a field named segment which points to the Segment object for
the segment within which the patch is to be made.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	258 284

Appendix 4: The Linker Algorithm	

(Any Patch “p” will be on the linked list “p->segment->patchList” and any Patch on
this list will point back to that same Segment.)	

Each Patch contains a field named patchType which tells what sort of patch
operation the linker is required to perform. One type is “alignment” and the
remaining types are for the different types of synthetic instructions. The patch type
is given by an integer in the range 1 … 25. Patch type 24 is for “alignment patch”.	

Each Patch contains a field lineNumber, referring to the original .s assembly
language file containing the synthetic instruction or .align causing the patch. The
lineNumber is only used to print error messages.	

Each Patch contains a field initialOffsetToPatch. This gives an offset in bytes from
the beginning of the segment of the address that needs to be patched. This offset
value comes from the .o object module and is not changed by the linker. However,
the linker will be inserting bytes into segments as a result of other patches. Thus the
actual offset may increase during the linker algorithm.	
	
Each Patch contains a field initialSize. This contains the number of bytes already
present in the segment prior to linking. There is also a field named exactSize which
indicates whether the assembler has already determined the number of bytes
required for the patch.	

For alignment patches, there will be zero bytes initially present in the segment. The
initialSize will be 0. The exactSize field will be set to -1, indicating that the linker is
unconstrained and can insert as many bytes as it needs to.	

For most synthetic instructions, the assembler will make no assumptions about how
the linker will translate it to machine code. In these cases, the initialSize will be 4
to indicate that 4 bytes are initially present in the segment. The exactSize field will
be set to -1, indicating that the linker is unconstrained and may insert additional
bytes as necessary in translating the synthetic instruction.	

However, for a few synthetic instructions, the assembler will have determined that
there must be a certain number bytes in the translation. Although the assembler was
unable to perform the translation itself, it may have relied on that being the size of
the translation. In this case, both initialSize and exactSize will be equal and set to 4,
8, 12, or 16. There will be exactly that many bytes initially present in the segment.
This exact size is not really necessary, but is included as a safety check (a program

Blitz-64: Assembler and Linker / Porter	 	 Page of 	259 284

Appendix 4: The Linker Algorithm	

logic check) to make sure that the linker does exactly what the assembler expected it
to, and relied on.	

For synthetic instructions, there will always be at least 4 bytes initially present in the
segment. These 4 bytes will contain 4 register fields, in the normal bits for machine
instructions for Reg3, Reg2, Reg1, and RegD. Some synthetic instructions have
register fields and these will be included in the obvious way in thee 4-bit fields. The
opcode bits (OP1 and OP2) will always be zero; the type of instruction can be
determined from patchType.	

If the initial version of the segment contains additional words (i.e., when exactSize
is 8, 12, or 16), these additional words will be zeros. In other words, the second,
third, and fourth words (if present) will be set to zero in the initial version of the
segment.	

Each Patch contains two fields named targetSymbol and offsetFromTarget. These
specify the operand that requires linker intervention. The targetSymbol will be set
to point to a Symbol object. The offsetFromTarget will be an integer and will often
be zero. Later, when we determine the actual value of the target symbol, the offset
will be added to give the final, effective value to be used in creating the machine
code.	

During the linking algorithm, the size allocated for a patch may be increased. For
example, in an alignment patch, the linker may determine that 300 bytes must be
inserted. As another example, in the case of an unconstrained synthetic instruction
(i.e., where initialSize = 4 and exactSize = -1), the linker may determine that an
additional word of machine code is necessary. The linker may grow an
unconstrained patch by adding up to 3 words (to make the total 16 bytes).	

As a result of growing patches and inserting bytes, the offsets (from the beginning of
the segment) to everything that follows the patch will be shifted.	

The sizeIncrement and currentOffsetToPatch fields will be used by the linker
algorithm, but will be set to zero initially. As the algorithm progresses,
sizeIncrement and currentOffsetToPatch will change. Both are in terms of bytes.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	260 284

Appendix 4: The Linker Algorithm	

Processing Imported Symbols	

Now, let’s continue describing the algorithm in function main that initializes these
data structures.	

Prior to processing the imported symbols step, we ran through all the input .o files
by going through the Module List and calling function AddNewModule for each
module. This allocated and initialized the Segment, Symbol, and Patch object for
each module that was explicitly named on the command line.	

Whenever an imported symbol is not otherwise defined, but is defined by some
module in some library, that library module must be added to the output file. The
added module itself may import more symbols, which may themselves be undefined,
causing additional modules to be pulled in from the library files.	

We’ve already gone through the Module List in order to call AddNewModule for each
explicitly mentioned Module.	

Now, in order to pull in the necessary library modules, we go through the Module
List a second time, from beginning to end, looking at all imported symbols. During
this process, we may add additional modules to the end of the Module List. In
particular, whenever we determine that another module from a library is needed,
we’ll add a new Module to the tail of the Module List.	

Whenever we add a new library module to the Module List, the function
AddNewModule must be called to allocate additional Segment, Symbol, and Patch
objects. Since newly added modules are placed at the tail end of the Module List,
every newly added module will get processed later on as we encounter it when
going through the Module List. Thus, its imported symbols will eventually be
examined, perhaps pulling in yet more modules. (Obviously, this process will
terminate since we only have a finite number of modules that can be added to the
list.)	

For each module, we’ll run through all the symbols in that module, looking only at
symbols of type “imported”. For each imported symbol, we’ll locate a matching
symbol (i.e., same spelling) that is exported. First, we check the Exported Index to
see if there is a matching symbol that has already been exported. If found, then we
can move on. Otherwise if there is no matching entry, we must search the Library
Index. If we find a match there, then we will pull in the module; otherwise we print

Blitz-64: Assembler and Linker / Porter	 	 Page of 	261 284

Appendix 4: The Linker Algorithm	

an error (“Undefined symbol”). As each module is processed by AddNewModule,
the symbols it exports will be added to the Exported Index.	

After pulling in all the modules, we make a second pass through the global list of
Symbols and link every imported symbol with the corresponding exported symbol.
In particular, we make the imported symbol’s target field point to the exported
symbol.	

Next, we run through the global symbol list a second time. This time, we look at the
relativeTo field. If a Symbol’s relativeTo field points to an imported symbol, we
will modify the symbol to point directly to the exported symbol.	

Next, we run through the global list of Patch objects. If the Patch object’s
targetSymbol points to an imported symbol, then we modify the patch to point
directly to the exported symbol.	

Sorting the Label and Segment Lists	

Every symbol that is a label belongs to exactly one segment. In other words, each
label is intended to identify an address within some segment.	

Each Segment object contains a linked list of all the labels that occur within it. Each
Segment object has a field named labelList which points to a linked list of Symbols,
which are linked using a field named nextForSegmentList.	

The assembler places all symbols in the .o file in a random order. (The symbols come
out of a hash table and the order is a byproduct of the hashing, so… it’s effectively
random.)	

In the next step in function main, we sort each segment’s label list to get them into
the order they appeared in the original source code. This is necessary because, as we
go through a segment and process the patches, we will be inserting bytes here and
there. As we pass by labels, we will need to update them as well, to reflect the new
addresses they will represent.	

You might guess that we sort the labels on initial offset into the segment. However, it
is possible that there can be more than one label for a single offset.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	262 284

Appendix 4: The Linker Algorithm	

Consider this example:	

label1:
.align 16

label2:

We perform the sort before we invoke PlaceSegment, which means that the ALIGN
patches all have zero length. Thus, the offsets for label1, label2, and the ALIGN will
all be identical. But we need to process them in the correct order, since the ALIGN
will expand to several bytes, making the resulting offsets for label1 and label2
different.	

We know that only one label can occur per source code line so, instead of sorting on
offset, we sort on source code line number.	

SortLabelLists ()	
This function looks at the label list for each segment and sorts it. The sort is
based line number into the segment. Actually, because ALIGNs have length zero, it
is better to sort on line number. This keeps things in the proper order.	

There are a couple of additional helper functions that do the actual sorting:	

quicksortLabelList (int m, int n)	
partitionLabelList (int left, int right) —> int	

Segment Ordering	

Generally speaking, a good way to pack “things” into an available space, is to try to fit
the largest things in first, and proceed in order from largest to smallest. (Imagine
packing several suitcases into the trunk of a car or furniture into a moving truck. You
want to put the largest items in first.)	

For floating segments (where the programmer has not said explicitly where to place
the segment), the linker takes this approach when placing segments in memory: It
looks at the floating segments in order, from largest to smallest.	

The problem of packing segments into memory in an optimal way must, I think, be
NP-complete; but trying to place larger segments before we try to place the smaller
segments should yield acceptable results.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	263 284

Appendix 4: The Linker Algorithm	

Before now, we have a single, global list of segments. In this step, we will partition
the set of segments into 5 lists, which we call:	

segmentList0	 All fixed segments	
segmentList4	 Floating segments that are not Executable & not Writable 	
segmentList5	 Floating segments that are not Executable & Writable	
segmentList6	 Floating segments that are Executable & not Writable	
segmentList7	 Floating segments that are Executable & Writable	

The segments on all lists will be ordered from largest to smallest.	

We do this by first sorting the list of all segments. Then, we run through it an place
each segment on exactly one of the sublists.	

The actual lengths of the segments will change over the course of the linker
algorithm. (The segment’s currentLength will change, but initialLength will
remain unchanged). Since the lists are not ordered by the actual length but by initial
length, the order may not be exactly perfect, but since the order of the segments is
unlikely to change significantly as segment sizes are adjusted, this approach should
lead to fairly good packing of segments into the available spaces.	

OrganizeSegmentLists ()	
This function sorts the global list of all segments from smallest to largest, based
on initialLength. Then, it builds all the individual segment lists, ordered from
largest to smallest.	

There are a couple of additional helper functions that do the actual sorting:
QuicksortSegmentArray and PartitionSegmentList.	

[We don’t actually care about the order of the fixed segments. Since their locations
are determined by the programmer, it really doesn’t matter what order we look at
each one. And you might have noticed that it is inefficient to sort one big list. We
don’t need to sort the fixed segments at all and it would be more efficient to sort the
four small lists separately. Technically, this is accurate, but… (1) We do not expect to
see many fixed segments; (2) We expect most segments to be either executable and
not writable (for code and constants), or not executable and writable (for data), so
we really have only two significant lists; and (3) We just don’t expect to see a huge

Blitz-64: Assembler and Linker / Porter	 	 Page of 	264 284

Appendix 4: The Linker Algorithm	

number of segments. The time to quick-sort even a few hundred segments is still
small.]	

Regions and Placing Segments	

All of main memory will be represented within the linker and Region objects will be
used to represent memory regions.	

struct Region {
 Region * prev; // Doubly linked list, ordered by address
 Region * next; // .
 Segment * segmentList; // List of segments in this region
 int64_t address; // Starting address of this region
 int64_t length; // Number of bytes (not necessarily a
 // multiple of anything)
 int regionStatus; // -1 = header; 0 = free; 4/5/6/7 = allocated
 int regionNumber; // For printing only
};

Each region has a starting address and a length in bytes. The fields named address
and length describe the region’s location and size.	

Region Invariants	

•	Every byte of memory belongs to exactly one region.	
•	The regions are kept in an ordered list.	
•	All regions are contiguous.	
•	The address of the first byte of a region directly follows the address of the last
byte of the previous region.	
•	Each region is either free or allocated.	
•	A free region contains no segments.	
•	An allocated region contains one or more segments.	
•	The segments in a region occupy exactly the bytes within that region.	

Region objects are organized in a doubly linked list. The fields next and prev are
used for this purpose.	

The list is organized as a circular ring. There is a dummy header object that is
inserted into the ring. Unlike all other Region objects, the dummy header object

Blitz-64: Assembler and Linker / Porter	 	 Page of 	265 284

Appendix 4: The Linker Algorithm	

does not represent a range of memory addresses. The dummy header is inserted
after the last Region and before the first Region.	

Each region has a status given by the field named regionStatus. These codes are
used:	

	 -1	 Dummy header	
	 0	 Unallocated, i.e., free	
	 4	 Allocated, Not Executable, Not Writable	
	 5	 Allocated, Not Executable, Writable	
	 6	 Allocated, Executable, Not Writable	
	 7	 Allocated, Executable, Writable	
	 	
Memory regions that are “free” are available for use. Initially, the region data
structure contains only a single region which contains all memory bytes. (And the
dummy header region exists, as well.)	

The linker algorithm will place segments in memory. Whenever a segment is placed
in memory, the region data structure will be modified. Bytes will be removed from a
free region and added to the allocated region that will contain the segment.	

Segments have memory attributes (executable, writable). When a segment is placed
in memory, the pages in that region will need to be marked by the OS kernel with the
correct (executable, writable) attributes. So when a region of memory is allocated, it
will be allocated with some particular set of attributes.	

Each region has a list of the segments that are in that region. When a segment is
placed into a region, it will be added to that region’s segment list. The field
segmentList points to the linked list of Segment objects. Within Segment objects,
the field nextForRegionList is used for this inked list. Unallocated regions will have
segmentList == NULL.	

Region objects are numbered with a field named regionNumber. This field is only
used for printing to distinguish Region objects. There is a global variable named
nextRegionNumber which is used to assign increasing numbers whenever a new
region is created.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	266 284

Appendix 4: The Linker Algorithm	

Initially, main memory will be divided into two regions:	

	 • Dummy Header	
	 • Free Region (covering all of usable memory)	

The following constants are initialized during program startup based on the -k
command line option:	

	 Kernel (-k)	 User Programs	
START_OF_MAIN_MEMORY 0x0_0000_0000 0x8_0000_0000
SIZE_OF_MAIN_MEMORY 0x8_0000_0000 0x8_0000_0000
HIGHEST_MAIN_MEMORY_ADDR 0x7_FFFF_FFFF 0xF_FFFF_FFFF

(There is also a -dsmall option which will reduce memory size to 4 pages, which is
useful for debugging and testing boundary cases.)	

During the linking algorithm as segments are placed in memory, a new region may
be created and “carved out” of an existing free region.	

The main linker algorithm repeatedly loops, looking for a solution to the segment
placement problem. Whenever the algorithm iterates, it needs to start over. At the
start of each new iteration, all memory regions will be freed and the Region data
structure will be completely re-initialized.	

MemoryReset ()	
This function creates the initial circular ring of two Region objects. Upon
subsequent calls, it frees any previously allocated Region objects, as well.	

As mentioned above, each region points to a linked list of segments that are in that
region. During MemoryReset, we also go through the segments and re-initialize
their “next” pointers, effectively removing them from the regions.	

PrintRegionList () 	
This function prints a table showing all the regions. It also contains a call to
CheckRegionConsistency.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	267 284

Appendix 4: The Linker Algorithm	

PrintRegion (region) 	
This function prints a single line describing a single region, including the
numbers of the segments in that region.	

CheckRegionConsistency () 	
This function runs through the region data structure, performing a number of
consistency checks. It is only invoked from PrintRegionList.	

In a normal use of the linker CheckRegionConsistency will not be invoked. If there
are problems or bugs, any run of the linker will almost certainly involve a command
line option that will print the region list and thus invoke CheckRegionConsistency.	

The programmer can specify exactly where a segment is to be placed, using the
“startaddr=” on a “.begin” statement. A segment for which the programmer has
given a starting address is called a “fixed” segment and must be placed at the exact
address the programmer has specified. A segment without a starting address is
called a “floating” segment. The linker will determine the address of floating
segments and place them wherever it determines is a good place.	

CreateNewRegion (freeRegion, address, segment) —> ptr to new region	
This function places a segment in memory. It creates a new Region object, places
the segment in it, and returns a pointer to the new region. The function takes a
free region as input, along with the segment that is being placed in memory and
the address where the segment is to be placed. The free region is guaranteed to
contain all the memory addresses that will be needed to place this segment at
this address, but the free region may contain additional bytes as well.	

This function will create a new Region object and place it in the ring data structure.
The new region may be identical in size and location to the given free region, in
which case the new Region will entirely replace the free Region. Or the new Region
may leave remnant free regions. There may be a shortened free Region before the
new Region and/or there may be shortened free Region after the new Region.	

Note that after calling this function, it is possible that the original free region has
been entirely replaced by an allocated region and that this are region may have
exactly the same (executable/writable) attributes as the region before or after it.
These regions must be merged, but that is the responsibility of the caller; it is not
done by this function.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	268 284

Appendix 4: The Linker Algorithm	

MergeWithNeighbors (region)	
This function is passed a newly allocated Region, previously created by function
CreateNewRegion. It is possible that this newly allocated region has the exact
same attributes (executable, writable) as the region directly before or after it. In
such cases, the two regions are merged into one larger region. This function uses
a helper function called MergeTwoRegions, first to deal with the region before
the candidate region and second to deal with the region after the candidate
region.	

MergeTwoRegions (region1, region2)	
This function will merge these two regions into one region if and only if they have
the same regionStatus codes. Whenever two regions are merged, the first
remains and the second disappears. All segments in the second region are moved
to the segmentList of the first region and the second region object is freed.	

RegionsShareAPage (firstRegion, secondRegion) —> bool	
This function tests to see if two regions happen to share a page. The regions may
not be adjacent, but first region is assumed to come before the second region.
This function determines the page number of the last byte of the first region and
the first byte of the second region and asks whether they are on the same page.	

If two segments with different (executable, writable) attributes are placed in
adjacent regions that happen to share a page, then an error must be reported.	

If we are linking a user program, then we need to enforce the rule that two segments
may not share a page unless that have the same (executable/writable) attributes.
The next function does this.	

RegionsInConflict (region, otherRegion) —> bool	
This function determines whether these two regions have conflicting attributes.
For example, if one region is “executable, writable” and the other region is
“executable, not writable”, there is a conflict. Free regions never conflict, since
they can take on any attributes.	

The above function is only used by the next function.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	269 284

Appendix 4: The Linker Algorithm	

CheckAndMergeNewRegion (region)	
The function is called directly after a new region has been created to contain a
some segment. This function calls RegionsShareAPage to see if this new region
shares pages with any other nearby regions and RegionsInConflict to check if
are conflicts. If there is a conflict, then it prints an error unconditionally. Then
this function calls MergeWithNeighbors.	

This function calls a helper function named FixedSegmentAttributeConflict to
print an error.	

FixedSegmentAttributeConflict (region, region2)	
This function unconditionally prints “***** ERROR: These segments have
different (executable, writable) attributes but try to occupy the same page. *****”.
It also prints additional information to augment the error message.	

SegmentSharesPageWithRegion (segment, region) —> bool	
This function is passed a segment and a region. If this segment has any pages in
common with the memory area in the region, this function returns true.	

SegmentStatusConflictWithRegion (segment, region) —> bool	
This function is passed a segment and a region. Presumably they share a page,
but this is not checked. Instead, it returns true iff they have (Executable/
Writable) attributes that are in conflict.	

ThereIsAnAttributeConflict (segment, freeRegion) —> bool	
This function is passed a segment and a free region into which we are considering
placing the segment. This function looks at the regions that precede the free
region and the regions that follow the free region. It determines whether this
segment shares a page with any allocated regions that have different (executable,
writable) attributes. For user programs, every page will must have a unique set of
attributes, so this is not acceptable placement of this segment.	

If we are linking a kernel program, we don’t care about conflicts and this function
returns immediately. Otherwise, it begins by examining all regions that follow the
free region, until it comes to a region that does not share a page with the segment.
Then it examines all regions that precede the free region, again halting when it

Blitz-64: Assembler and Linker / Porter	 	 Page of 	270 284

Appendix 4: The Linker Algorithm	

comes to a region that does not share a page with the segment. This function calls
SegmentSharesPageWithRegion and SegmentStatusConflictWithRegion to get
the job done.	

FindFreeRegionForFixedSegment (segment) —> region	
This function goes through the region list looking for the free region in which this
fixed segment is to be placed. If none can be found, an error message is printed.	

The above function can print the following errors, all of which are “fatal” and will
immediately terminate the linker:	

•	The starting address of first segment overlaps some other fixed segment	
•	 The ending address of first segment overlaps some other fixed segment or
some unusable memory region	
•	 The starting address of this segment is not within 0x0_0000_0000 ...
0x7_FFFF_FFFF, yet command option -k requires this	
•	 The starting address of this segment is not within 0x8_0000_0000 ...
0xF_FFFF_FFFF. (For kernel code, use the -k option)	

ComputeRegionStatus (segment) —> regionStatus	
A little helper function that returns the region status code number for this
segment:	
	 4	 Not Executable, Not Writable	
	 5	 Not Executable, Writable	
	 6	 Executable, Not Writable	
	 7	 Executable, Writable	

IsLegalAddress (integer) —> bool	
A little helper function that tests whether this integer is a legal address. By legal,
we mean that it is any value within	
	 0_0000_0000 … 7_FFFF_FFFF	 	 if -k was used	
	 8_0000_0000 … F_FFFF_FFFF	 	 otherwise	

PlaceSegment (segment, newAddress) —> size	
This function is passed a segment and the address where this segment is to be
placed in memory. This function assumes that the patches have already been
adjusted and it will not modify the sizes of the patches (except ALIGN patches).	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	271 284

Appendix 4: The Linker Algorithm	

This function will compute the size of this segment. It will also examine all the
labels in the segment and (knowing where the segment is getting placed), it will
set their values. This function will also determine the address that each patch for
this segment is supposed to modify and will set that.	

Now that we have addresses for the bytes within a segment, we can determine
how many bytes to insert for an ALIGN patch. This function will determine the
sizes of the ALIGN patches.	

Given: An address (where to put the segment)	
Returns: The new segment size in bytes	

This function will take the patches, with their sizes as currently configured. It will
not adjust patch sizes (other than from ALIGN patches).	

For the segment...	
 Set currentAddr and currentLength.	
For every ALIGN patch...	
 Set currentOffsetToPatch.	
 Determine what size is needed & set sizeIncrement.	
For all other patches...	
 Use the current value of sizeIncrement.	
 Set currentOffsetToPatch.	
For every LABEL...	
 Set its currentValue to an absolute address.	

This function will go through the segment from top to bottom. It will only look at
the segment’s labels and patches, not the actual data.	

The above function uses a fairly complex algorithm. Associated with each segment
are two lists: patchList and labelList. These have previously been sorted. The
function starts at the beginning go the segment and goes through it linearly. It
doesn’t actually look at the data bytes; these won’t even be read in from the file until
later when we are building the output file.	

As this function goes through the segment, it is inserting bytes. Or, more precisely, it
is figuring out how many bytes need to be inserted and computing how that shifts
everything down in memory and makes the segment larger.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	272 284

Appendix 4: The Linker Algorithm	

The main loop goes through the label list and the patch list simultaneously. For each
iteration, it takes whatever comes next in the file. This is either a label or a patch.	

The loop is keeping track of how many bytes have been inserted so far. When a label
is encountered, it can use this information (bytesAdded) to determine the actual
value of the label.	

When it encounters an ALIGN patch, it can determine the current address and
determine how many bytes to insert to give the proper alignment. And it also
increments bytesAdded accordingly.	

When it encounters any other kind of patch, it looks at the patch (in particular at the
patch’s sizeIncrement field) to determine how many bytes this patch has grown
beyond what was originally in the segment. Again, it will increment bytesAdded
accordingly.	

Also, for all kinds of patches, it will make a note of exactly where in the segment this
patch is now located, by setting the patch’s currentOffsetToPatch field.	

This function is “idempotent”, which means that it can be called repeatedly with no
adverse effects. If you don’t like where the segment was placed, you can call this
function again to put it somewhere else. As the main algorithm iterates, the
segments will be moved around to different locations.	

PlaceOneFloatingSegment (segment) —> freeRegion	
This function is passed a segment. It finds a location where this segment can be
legally placed. It searches the region list and looks at all free regions. This
function returns the free region that contains the segment’s starting address.	

This function does not modify the Region data structure. However, this function
calls PlaceSegment to place the segment at some address, which will modify the
segment and set segment->currentAddr.	

If no location can be found to place this segment, this function causes a
FatalError, which will abort the linker.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	273 284

Appendix 4: The Linker Algorithm	

Since a floating segment can be placed anywhere and since memory is quite large, it
is hard to envision a scenario where this function fails to find a place to put this
segment. So the likelihood of getting this error message is small.	

PlaceFloatingSegments (segmentList)	
This function is passed a list of segments. It will go through the list and, for each
segment, it will locate a place in memory where this segment can be placed. It
will place the segment there and modify the region data structure.	

This function runs though all the segments in the list. Some segments may have
already been placed. For example, all fixed segments will have been placed
previously. Also some segments may have size zero; these segments will not go
into memory and we just ignore them.	
 	
For each segment, this function calls PlaceOneFloatingSegment to find a
location for the segment. Then it calls CreateNewRegion to put the segment into
a new region. Finally it calls CheckAndMergeNewRegion to merge the region
with its neighbors. The function CheckAndMergeNewRegion will see if there
are conflicts with nearby allocated regions, but this should never occur, since
PlaceOneFloatingSegment will only find legal places to put a floating segment.	

PlaceAllSegments ()	
This function is called to assign a memory address to every segment and build
the Region data structure, which will reflect how memory is used.	

For each segment, this function will set the segment’s…	
	 currentAddr	
	 currentLength	

For every ALIGN patch, this function will…	
 Set currentOffsetToPatch.	
 Determine what size is needed and set sizeIncrement.	

For all other patches, it will…	
 Use the current value of sizeIncrement.	
 Set currentOffsetToPatch.	

For every LABEL, it will…	
 Set its currentValue to an absolute address.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	274 284

Appendix 4: The Linker Algorithm	

The above function will take the patches as they are currently configured. In other
words, it will not evaluate the patches, modify them, or see if they are workable.
After all, we can only compute or check the patches after the segments have been
placed in memory, since we can’t assign values to labels until after the segment
placements have been made. We’ll look at the patches later on.	

The algorithm used to place the segments in memory is this:	
• First, place all fixed segments at their locations.	
• Then try to fill in gaps keeping segments with similar attributes together.	
• Finally, place any remaining segments wherever we possibly can.	

The PlaceAllSegments function begins by calling MemoryReset to allocate and
initialize the Region data structure. Next, it marks all segments as “unplaced”.	

Then for each fixed segment, it calls…	
	 PlaceSegment	
	 FindFreeRegionForFixedSegment	
	 CreateNewRegion	
	 CheckAndMergeNewRegion	
 	
Next, PlaceAllSegments will look at each free region and try to fill it with floating
segments that have the same (executable/writable) attributes as the previous
region.	

Previously, we have created separate lists. The lists are called:	

segmentList0	 All fixed segments	
segmentList4	 Floating segments that are not Executable & not Writable 	
segmentList5	 Floating segments that are not Executable & Writable	
segmentList6	 Floating segments that are Executable & not Writable	
segmentList7	 Floating segments that are Executable & Writable	

For example, imagine we have an “executable/not-writable” fixed segment followed
by a free region. If there are other segments that are also “executable/not-writable”,
we’d like to place them in this free region. Perhaps by packing all the “executable/
not-writable” segments close together, we can reduce the number of pages that must
be marked “executable/not-writable”.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	275 284

Appendix 4: The Linker Algorithm	

In this step, the function searches for any free region preceded by an allocated
region. For example, assume it finds a free region preceded by an “executable/not-
writable” region. It chooses the correct segment list, e.g., segmentList6.	

Then we run though that list, attempting to place those segments into this free
region. To do that, this function calls a function named
TryToPlaceTheseSegmentsAfterThisRegion.	

Finally, we simply place the remaining floating segments anywhere we can fit them.	

Do this this, PlaceAllSegments will call PlaceFloatingSegments four times, once for
each list of floating segments. We will process the lists in this order:	

segmentList5	 Floating segments that are not Executable & Writable	
segmentList4	 Floating segments that are not Executable & not Writable 	
segmentList6	 Floating segments that are Executable & not Writable	
segmentList7	 Floating segments that are Executable & Writable	

The idea is that we are guessing that the segments that contain variables will be
marked not executable and writable. We want this to go in low memory (0x0 for
kernel or 0x8,0000,0000 for user programs, so that gp-relative addressing will work
well. Then we follow it segments that are not executable and not writable; which we
assume is read-only data; again we expect placement in low memory will tend to
facilitate gp-relative addressing. Then we follow it with code, which is executable
and not writable.	

TryToPlaceTheseSegmentsAfterThisRegion (segmentList, region)	
This function is passed a list of segments, all of which have the same attributes
(executable, writable). It is also passed a region, which is followed by a free
region.	

We run through the segment list looking at each unplaced segment in turn. We
attempt to place each such segment at the beginning of the free space.	

The function TryToPlaceTheseSegmentsAfterThisRegion is passed a list of
floating segments, all of whose attributes match the attributes of the region. The
region is followed by a free region, at least when it is called.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	276 284

Appendix 4: The Linker Algorithm	

The function runs through the list of segments and tries to pack them into the free
region. The segments are sorted from largest to smallest, so it attempts to fill the
free region with the largest first, followed by smaller segments.	

Some segments may already have been placed; these are ignored. Otherwise, we call
PlaceSegment to update the segment as if it has been placed. This will determine
the segment’s size. Then we check to see if it will actually fit in the space available.
We also have to make sure that placing this segment here will not cause a conflict
due to a shared page with a subsequent region. This is done by calling
ThereIsAnAttributeConflict.	

If everything looks good, this function creates a new region and places the segment
into it, by calling CreateNewRegion. Then it calls MergeWithNeighbors to merge
this region with the original region. It is also possible that the newly created region
completely eliminated the free region and we can merge the new region with the
following region.	

On the other hand (if the free region was not large enough or there were attributes
conflicts), the segment is not placed and we move on to the next segment (toward
smaller segments) to see if it will fit.	

Once all the segments have been placed in memory, every LABEL symbol will have
been assigned an address. Now we can compute the value of all EQUATE symbols.
Symbols of type EQUATE were defined with an .equ pseudo-op.	

We no longer care about symbols of type IMPORT, since all references to a symbol
defined with a .import pseudo-op have been replaced by references to an exported
symbol, which necessarily must have been defined either as a LABEL or EQUATE
symbol.	

ResolveEquates ()	
This function runs through all symbols and, for every symbol of type EQUATE,
computes and fills in its “currentValue” field.	

This function uses a marking algorithm, utilizing the “markFlag” field in symbols.	
	 0 = “not done yet”	
	 1 = “in progress”	
	 2 = “done” (currentValue has been determined)	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	277 284

Appendix 4: The Linker Algorithm	

First, the ResolveEquates function runs through all symbols and marks all EQUATE
symbols as “not done yet”. It marks all LABELS and IMPORT symbols as “done”.	

Then it runs through all symbols again, and for each EQUATE symbol, calls function
ResolveOneEquate.	

ResolveOneEquate (symbol)	
This is a recursive algorithm that computes the value of the given symbol.	

The ResolveOneEquate function returns immediately if the symbol is marked as
“done”. If the symbol is already marked as “in progress”, we have detected a cyclic
definition, so we print an error and return.	

If the symbol is an absolute value, then we can immediate set its value. We mark it
“done” and return.	

Otherwise, this symbol is defined as relative to some other symbol. We should take
the value of the other symbol and add the given offset to it.	

In order to get the value of the other symbol, we will call ourself recursively. So we
set the markFlag to “in progress” and recursively call ResolveOneEquate on the
relative-to symbol.	

Upon return, we change the markFlag to “done”, retrieve the value of the relative-to
symbol, add the offset to it to determine this symbol’s new currentValue, and
return.	

The Main Linker Algorithm	

Now we have all the functions we need — the functions previously described. We
are ready to give the algorithm.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	278 284

Appendix 4: The Linker Algorithm	

REPEAT until no more failures	
	 Place all fixed segments.	
	 Place all floating segments.	
	 	 (Placing segments will set "currentValue" for all labels)	
	 Resolve all equates.	
	 	 Recursive Algorithm: Set a flag to check for cycles.	
	 	 	 Initialize the flag to 0.	
	 	 	 0 = not done yet; 1=in progress; 2=final value determined	
	 Check all patches.	
	 	 Determine what machine code the patch translates to.	
	 	 If any patch is too big to fit its allocated space	
	 	 	 Increase the "sizeIncrement" of the patch	
	 	 	 FAILED = true	
END REPEAT	

The placement of all fixed and floating segments is done within function
PlaceAllSegments. Equates are resolved within function ResolveEquates. And the
patches are checked within function CheckAllPatches.	

So the above algorithm looks more-or-less like this in the code:	

failureOccurred = 1;
while (failureOccurred) {

failureOccurred = 0;
PlaceAllSegments ();
ResolveEquates ();
CheckAllPatches ();

}

In order to understand this, think about the patches within segments. Each patch
has an initial size. If, during the algorithm, that size is determined to be too small for
the machine instructions that must be used, the patch size will be increased. This
will constitute a “failure”.	

The placement of segments is done without modifying the patch sizes, with one
exception exception: the ALIGN patches. The ALIGN patches are processed at the
time a segment in placed at a specific address. (We can only perform the alignment
after we know the actual addresses.)	

Placing the segments has the side-effect of assigning an address to each label.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	279 284

Appendix 4: The Linker Algorithm	

After the segments have been placed and the labels have been assigned addresses,
we can process all the equates.	

Once we have processed the equates, we have values of all symbols and we know
where the patches are in memory.	

Then, we can run through the patches. Each patch has a certain number of bytes
allocated to it. The function CheckAllPatches makes sure that the machine
instructions for each patch will fit into the bytes we have reserved for it. If there is a
problem (i.e., the machine code for a synthetic instruction will not fit into the space
we have reserved for the patch), then CheckAllPatches will determine how many
bytes are needed to increase the reservation.	

If CheckAllPatches ever determines that some patch would not fit into the space
reserved for it, it will set the global variable failureOccurred and the algorithm will
loop.	

The size of a patch is given by two fields in the Patch object: initialSize and
sizeIncrement. CheckAllPatches may increase the sizeIncrement and, if so, it will
set failureOccurred.	

If, however, there is adequate room reserved for every patch, then CheckAllPatches
will complete and the repeat loop will terminate.	

CheckAllPatches ()	
This function runs through all the patches and makes sure that there is adequate
room in the segment for the patch.	

If we encounter a patch that will not fit in the allotted space, we set
failureOccurred to TRUE and we increase patch->sizeIncrement to indicate
how many bytes are required.	

For registers, we are using dummy values. The actual synthesized instructions
are ignored.	

The function CheckAllPatches simply runs through the global list of patches and,
for each, calls ProcessOnePatch. Patches of type ALIGN are ignored, since they are
processed in function PlaceSegment.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	280 284

Appendix 4: The Linker Algorithm	

ProcessOnePatch (patch, finalRun)	
This function will process a single patch, creating the translation of a synthetic
instruction. It will place the resulting machine code translation into these
variables:	

	 word1 — 1st instruction word	
	 word2 — 2nd instruction word	
	 word3 — 3rd instruction word	
	 word4 — 4th instruction word	

It will use as many of these as necessary, placing NOPs in the remaining words.	

This function assumes that word1 will initially contain the registers to use in
fields Reg1, Reg2, Reg3, and RegD.	

During the main algorithm, the registers in word1 will be zero and don’t matter.
During the final run when we are actually putting the bytes into the segment
data, the registers in word1 will be valid.	

This function will modify patch->sizeIncrement, increasing it as necessary.	

The number of bytes actually used is initialSize + sizeIncrement.	

If sizeIncrement was increased, this function will set failureOccurred to TRUE.
Otherwise, failureOccurred will not be modified.	

If finalRun is true, this function will assume that sizeIncrement was correct and
will produce a ProgramLogicError if not.	

Errors may be detected. They will be ignored, unless finalRun is TRUE, in which
case they will be printed. The only user error detected is “offset out of range” for
the LOADx-offset and STOREx-offset instructions.	

The function ProcessOnePatch is lengthy.	

We should make one note. Normally, the translation of a synthetic instruction does
not depend on the values of Reg1, Reg2, Reg3, or RegD. There is one exception,
namely the MOVI instruction. If the destination register in gp (r13) then the
synthetic instruction may be translated differently.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	281 284

Appendix 4: The Linker Algorithm	

To deal with this, there are actually two patch types for MOVI:	

patchType == 1: 	 MOVI (RegD ≠ gp)	
patchType == 25: 	 MOVI (RegD = gp)	

For this reason, this function needs to know what is in the file. So, in this case, the
function will read a word from the file at the site of the patch to get the register
values to see if the destination register is, in fact, gp (r13).	

Finalization	

After the loop terminates, we call function PerformRegionRounding. This function
only has any effect if we are linking a user program.	

The executable will be organized into pages. The function
PerformRegionRounding will enlarge each region to become an integral multiple
of pages. It does this by creating some “dummy” zero-filled segments which it adds
to regions as necessary.	

PerformRegionRounding ()	
This function is called after all segments have been placed and the regions have
been created. It rounds all regions to be an even multiple of pages and makes
sure each region starts on a page boundary. It does this by taking bytes out of the
free regions before and after a region.	

This function will also creates dummy "zero-filled" segments whenever the bytes
in a page are not filled with a real segment. In other words, when bytes are move
from a free region to an allocated region, a new zero-filled segment will be
created and added to the allocated region. Later, when we are writing the
allocated regions out to the executable file, these new zero-filled regions will be
included, making sure that all bytes in the regions are either initialized with bytes
or zero-filled.	

When linking a kernel program, this function does nothing.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	282 284

Appendix 4: The Linker Algorithm	

CreateZerofilledSegment (region, startAddr, lengthInBytes)	
This function creates a dummy segment that is zero-filled and adds it to the given
region.	

Such a segment is required when the linker places two or more segments in a
single page but when there is a gap between them. These bytes must be zero-ed
at load time. There is also a dummy module that will be created. This module will
contain all the dummy segments.	

The module will NOT be placed on the module list, so it will not print out.
However, if errors occur, the module will be needed for printing.	

The newly created dummy segment will be placed on the global segment list, but
will not be placed on any of the segment sublists. The new segment will be placed
on the region's segment list.	

The program also checks to make sure there is a symbol named “_entry”.	

Finally, the program writes out the executable file. Given the data structures we have
built up to this point, this part is straightforward.	

Finally, we print out the data structures (by invoking DumpAllDataStructures) if
the -s command line option was specified, then print counts of error messages and
warnings and terminate.	

Blitz-64: Assembler and Linker / Porter	 	 Page of 	283 284

Acronym List	
CSR	 Control and Status Register	
EOL	 End of line	
ISA	 Instruction Set Architecture (the core design)	
KPL	 Kernel Programming Language	
LC	 Location Counter	
LSB	 Least Significant Bit / Byte	
MSB	 Most Significant Bit / Byte	
PC	 Program Counter	
UTF-8	 An encoding for Unicode (Unicode Transformation Format)	

Blitz-64: Assembler and Linker / Porter	 Page of 	284 284

