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Chapter 1: Introduction	

Assembly Language	

The assembler is a tool which will translate programs written in assembler (or 
“assembly language”) into binary machine code. Machine code can be loaded into 
memory and executed. Machine code consists of a sequence of binary bits and 
cannot be practically created or deciphered by humans.	

Assembly code is a human-readable notation in which to specify machine code.	

Although high-level programming languages strive to be platform independent, the 
opposite is true of assembly language. Each processor has a unique assembly 
language tailored to its design. There is much similarity in the assembly languages 
for different machines, but there is also significant difference.	

This document describes the assembly language for the Blitz-64 processor core. It 
assumes that you have familiarity with the Blitz-64 Instruction Set Architecture 
(ISA). The Blitz-64 architecture is described in the following document:	

	 “Blitz-64: Instruction Set Architecture Reference Manual”	

Programming in assembly language is an acquired taste and should not be 
attempted by beginning programmers. Assembly programming requires an 
enormous attention to detail and an extremely high degree of conscientiousness, 
commitment, and precise logical thinking. The resulting programs are totally non-
portable. Merely getting an assembly program to work on a different model in the 
same processor line is non-trivial.	

Assembly language and the skill to code in assembler is important for several 
reasons.	

First, there are often tasks that simply cannot be done in high-level languages and 
the code must be written in assembler. Assembly code is required for operating 
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Chapter 1: Introduction	

systems kernels and for accessing certain specialized aspects of the hardware that 
cannot be addressed in a high-level language. Although much work has been done to 
add capabilities to high-level languages to minimize the amount of assembly code, 
some assembly code is required.	

Second, high-level languages must be compiled to run on physical hardware. (Here 
we speak of compiled languages (like “C” and “C++”) and not of interpreted 
languages (like just about every other modern language, including Java, JavaScript, 
Python, Perl, etc.). This means the source code must ultimately be translated into the 
bit patterns recognized by the intended target hardware.	

The typical approach is for a compiler to translate the source code into assembly 
code. In a second step, the assembler tool is used to translate the assembly program 
into machine code. While there are many approaches, this approach works well 
since it breaks the task into two smaller, tasks: translation into assembly code, 
followed by translation into machine code. It removes many of the hardware details 
from the compiler and also permits the compiler writers to determine whether a 
compiler is working properly and producing the correct output.	

Third, understanding the assembly language for a processor is a requirement for 
anyone who wants to understand and improve the runtime execution performance 
of programs written in high-level code. Those programmers seeking to maximize 
performance need to understand assembly language so they can spot inefficient 
code sequences and determine whether the compiler is producing the best code.	

Fourth, assembly language programming is required for new, state-of-the-art 
processors for which no high-level languages are available. Assembly language 
programming may also be required for obscure or specialized processors for the 
same reason.	

Finally, there are a few programmers who actually enjoy programming in assembler.	

The Linker	

The assembler tool translates assembly source code into machine code. However, 
programmers break large programs into pieces which we will call “modules”. 
Generally, a small number of pieces are combined to produce an executable program. 
For example, one piece might contain a number of mathematical support functions 
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Chapter 1: Introduction	

(like “sin” and “sqrt”). This might be combined with the “main” function of a 
program to produce an executable. Obviously, the mathematical support functions 
are written separately and reused in many different programs.	

In practice, there is a tremendous number of code modules. The sharing and re-use 
of modules is critical.	

The assembler tool takes as input a single source code file (containing the code and 
data for a single module) and produces a “object file”. For example, a large program 
consisting of 5 modules will require the assembler to be run five times, once for each 
module, producing five object files.	

The linker tool is named “link”. (We chose a name more meaningful than the 
traditional name used in Unix/Linux, which was “ld”.)	

The linker tool is used to combine the object files and produce a single executable 
file. In other systems, the linker also takes as input some sort of textual script or 
program to give the linker instructions. But in the Blitz-64 approach, such additional 
information is not needed. The input to the Blitz-64 linker consists of only the object 
files.	

The executable file is stored in a file and, when the program is to be run, the 
operating system will read this file (understanding the format of executable files) 
and will load the bits into memory just prior to beginning execution.	

The primarily programming language for the Blitz-64 system is KPL (Kernel 
Programming Language). While almost every other computer uses the “C” 
language — a language from the early 1970s — as the core language upon which all 
the remaining software is constructed, Blitz-64 does not support “C”. Blitz-64 takes 
the radical approach of not supporting any legacy software.	

KPL supports a concept called “packages”. Each package is separately compiled into 
an assembly language program. In this way, KPL works like program development in 
“C”. For example, five packages will be separately compiled, yielding five different 
assembly files.	

Each assembly file produced by the compiler will assembled separately. Additional 
modules that have been hand-code in assembly language will also be assembled by 
the assembler tool. Finally, the linker tool will be run to combine all the object 
modules into a single executable file.	
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Additional Tools	

A separate tool, called “dumpobj”, is also provided. It can be used to look at the 
contents of an object file or an executable file. These files are not text files and are 
not meant to be human readable. The “dumpobj” tool merely prints out information 
about the file contents in a format that humans can read. This tool is not normally 
needed in program development, so it is used less often.	

Several object modules can be combined into a “library”. The linker can consult a 
library file to locate modules as needed by the program being linked. The 
“createlib” tool is used to create library files.	

Another tool, called “hexdump”, is also provided to look at the contents of any file. 
The “hexdump” tool prints out the contents of any file in hex. It also prints out any 
ASCII characters. The “hexdump” tool is useful in determining what exactly is in a 
file.	

Tool Names and File Extensions	

The names of the tools are:	

	 kpl	 The KPL compiler tool	
	 asm	 The Assembler tool	
	 link	 The Linker tool	
	 dumpobj	 Tool to display info about object and executable files	
	 createlib	 Tool to create a library file	
	 hexdump	 Tool to display the contents of any file in hex	
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Chapter 1: Introduction	

Blitz-64 uses file extensions to suggests the nature or type of material in a file, and 
the file extensions are similar to other systems:	

	 .c	 KPL source code (“c” for “code”)	
	 .h	 KPL header files	
	 .s	 Assembly programs	
	 .o	 Object files	
	 .lib	 Library files	

Executable programs usually do not have extensions, but when no filename is 
supplied, the traditional default name of “a.out” is used. 	

Document Revision History / Permission to Copy	

Version numbers are not used to identify revisions to this document. Instead the 
date and the author’s name are used. The document history is:	

Date	 Author	
27 October 2018	 Harry H. Porter III  <document created>	
28 May 2019	 Harry H. Porter III 	
19 March 2022	 Harry H. Porter III 	
18 October 2022	 Harry H. Porter III	
3 November 2022	 Harry H. Porter III	
9 September 2023	 Harry H. Porter III	
14 December 2023	 Harry H. Porter III  <current version>	

	 	
In the spirit of the open-source and free software movements, the author grants 
permission to freely copy and/or modify this document, with the following 
requirement:	

You must not alter this section, except to add to the revision history. You 
must append your date/name to the revision history.	

Any material lifted should be referenced.	
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Program Versions	

In the Blitz-64 project, version numbers are not used for programs and documents. 
Instead, dates are used. This document describes the following programs.	

By comparing dates, you can determine whether this document matches the tools 
you are using or, if not, which is more recent.	

Tool           	 Version Described Here           	 Coding Status	
asm	 < same date as this document >	 Completed	
link	 < same date as this document > 	 Completed	
dumpobj	 < same date as this document > 	 Completed	
createlib	 < same date as this document > 	 Completed	
hexdump	 < same date as this document > 	 Completed	
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An Example Program	

    #################
    #
    # MyFun
    #
    # This function does such and such. It uses…
    #
    #################
            .begin
            .align  4
            .export MyFun
    MyFun:  stored  0(sp),r2        # Save registers
            stored  8(sp),r3        # .
    loop:                           # LOOP
            loadb   r3,0(r2)        #   IF r4>*r2 THEN
            ble     r4,r3,endif     #   .
            sub     r1,r5,r3        #     r1 := r5-(*r2)
    endif:                          #   ENDIF
            addi    r2,r2,1         #   r2++
    # … etc …
            jump    loop            # ENDLOOP

A Second Example	

The following example illustrates a number of different instruction and operand 
combinations.	
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This code assembles without error as a standalone source file, although taken as a 
whole, the code is obviously not a program to be executed.	

# Examples showing different pseudo-ops

.begin startaddr=0x0456,executable,writable
a: .byte 0x12 # allocates 1 byte
b: .halfword 0x1234 # allocates 2 bytes
c: .word -1234 + 0x5d # allocates 4 bytes
d: .doubleword y+246 # allocates 8 bytes
e: .float -123.456e78 # allocates 8 byte double float
s_1: .string "hello\n" # allocates N bytes

.export MyLabel # make symbol avail to other mods

.import OtherLabel # use a symbol from other module
x: .skip 100 # skips over bytes, w/ zero-fill

.align 8 # inserts 0x00 bytes as necessary
y: .equ 100 # Defines symbolic constant

# Examples showing different operands

sysret # Format A-0: <no operands>
checkw r1 # Format A-1: Reg1
sextw r7,r1 # Format A-2: RegD,Reg1
add r7,r1,r2 # Format A-3: RegD,Reg1,Reg2
alignd r7,r1,r2,r3 # Format A-4: RegD,Reg1,Reg2,Reg3
csrswap r7,csr_status,r2 # Format A-7: RegD,CSRReg1,Reg2
csrread r7,csr_status # Format A-8: RegD,CSRReg1
getstat r7 # Format A-9: RegD
addi r7,r1,-456 # Format B-1: RegD,Reg1,immed-16
load.d r7,250(r1) # Format B-2: RegD,immed-16(Reg1)
checkaddr r7,5 # Format B-3: RegD,Reg1,immed-3
syscall 123 # Format B-4: immed-10
slli r7,r1,63 # Format B-5: RegD,Reg1,immed-6
csrset csr_status,0x03 # Format B-6: CSRReg1,immed-16
store.b 123(r1),r2 # Format C-1: immed-16(Reg1),Reg2
b.eq r1,r2,+8 # Format C-2: Reg1,Reg2,immed-16
jal lr,-12 # Format D-1: RegD,immed-20

# Examples showing different synthetic instructions

movi r7,0x123456789abcdef0 # Format S-1
blt r1,r2,MyLabel # Format S-2
call MyFun # Format S-3
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loadw r7,MyVariable # Format S-4
loadw r7,my_offset(r1) # Format S-4
storeb MyVariable,r2 # Format S-6
stored my_offset(r1),r2 # Format S-7

MyVariable: .doubleword 0
MyLabel: jump MyLabel
my_offset: .equ 100

Terminology, Notation, and Basic Concepts	

•	Byte	 8 bits	
•	Halfword	 16 bits	 2 bytes	
•	Word	 32 bits	 4 bytes	
•	Doubleword 	 64 bits 	 8 bytes	

Binary values are frequently specified in hex.	

	 number	 number    	
 	 of bytes	 of bits	 example value (in hex)	
	 byte	 1	 8 A4	
	 halfword	 2	 16	 C4F9	
	 word	 4	 32	 AB12CD34	
	 doubleword	 8	 64	 0123456789ABCDEF	

To clarify and prevent confusion, hex numbers are often preceded by “0x”. For 
example:	

	 0x1234	

As in most other computers, main memory is byte addressable, which means that 
every byte in memory has a unique address.	

Main memory is Big Endian, which means that the most significant byte of a value is 
stored first, at the starting address. For example, if the value 0x1234 is stored in 
memory at address X, then the first byte 0x12 will be in location X and the second 
byte 0x34 will be in location X+1. This means that the bytes are not rearranged. 
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Many other computers (including x86) use the opposite convention, Little Endian, 
which reverses the byte order.	

The notation [n:m] is used to identify bits. For example, [63:60] means the most 
significant (MSB) 4 bits in a doubleword.	

We use the term KiByte to mean 1,024 (i.e., 210). We avoid using the term KByte (i.e., 
1,000 = 103). Likewise, we use MiByte and GiByte instead of MByte and GByte.	

	 	 	   Hex Value  	   Decimal Value  	
	 KiByte	 210	 400	 1,024	
	 MiByte	 220	 10_0000	 1,048,576	
	 GiByte	 230	 4000_0000	 1,073,741,824	

The Blitz-64 processor has certain alignment requirements. A halfword aligned 
address is an even number and, when represented in binary, ends with a 0 bit. A 
word  aligned address is a multiple of 4 and ends with 00. A doubleword  aligned 
address is a multiple of 8 and ends with 000.	

The Blitz-64 is “strongly 64 bits”, which means that all arithmetic is done with 64 
bits. The processor has minimal support for legacy sizes such as 8, 16, or 32 bits.	

Integers are represented with signed, two’s complement values.	

	 	     Size	 	
	 	   in bits  	                                        Range of values	 	 	
byte	 8 	 -128 … 127	
halfword	 16	 -32,768 … 32,767	
word	 32	 -2,147,483,648 … 2,147,483,647	
doubleword	 64	 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807 	

Sign-extension enlarges an integer represented in signed two’s complement binary. 
For example, sign-extending the halfword 0x8C32 to a doubleword yields the 
following result:	

	 0xFFFFFFFFFFFF8C32	
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For large numbers, we often add underscores every 16 bits, to prevent confusion :	1

	 0xFFFF_FFFF_FFFF_8C32	

The underscore is in assembler code, as well as documentation and comments.	

Size reduction (e.g., from 64 to 32 bits) results in an “overflow” error whenever a 
the value exceeds the range of the smaller size..	

Tokens and Lexical Issues	

Identifiers may contain letters, digits, and underscores. For example:	

MyLabel
_entry
lab_23_

Identifiers must begin with a letter or underscore. Case is significant.	

Identifiers are limited in length. Currently the limit is set to 1,000 characters. [ This 
limitation is hardcoded into the assembler tool and requires recompiling “asm” to 
change. ]	

Identifiers may contain only ASCII characters. By “letters and digits”, we mean one of 
the the 26+26+10 characters in  {  a … z  A … Z  0 … 9  }.	

Keywords   The assembler recognizes a number of special keywords which 
otherwise resemble identifiers. These keywords may not be used for identifiers.	

Although the period character is not allowed in identifiers, several keywords contain 
the period character. For example:	

load.w
.begin

 Sometimes a comma is used as a separator. The Blitz-64 tools recognize and accept underscores, 1

but not commas.
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The following classes of keywords are recognized:	

	 	          Examples        	
	 Opcodes for machine instructions	 add, load.w, syscall, …	
	 Opcodes for synthetic instructions	 mov, call, bgt, …	
	 Pseudo-ops	 .begin, .equ, .string, …	
	 Registers	 r0, … r15, t, sp, lr, …	
	 CSR Registers	 csr_status, csr_cycle, …	
	 Misc. keywords	 page, startaddr, …	

An integer value may be specified in decimal or in hex. If specified in decimal, the 
integer value must lie between 0 and 9,223,372,036,854,775,807 (i.e. 263-1). 
Commas are not allowed.	

Integer values may be given in hex notation, and must be preceded by “0x”. For 
example:	

	 0x1234abcd	
	 0x1234ABCD 	 ← case does not matter	

A hex constant may optionally contain underscore characters, which may be used to 
improve readability. An underscore should be placed after every fourth hex digit, but 
this is not enforced.	

	 0x4d03_55e2_3a8e_47a9 		 ← recommended style	
	 0x4d_0355e23a___8e47a9 	 ← also allowable	

Every integer constant specifies a 64-bit signed value, regardless of how many digits 
appear.	

Integer values can be specified in either decimal or hex. Hex notation and decimal 
notation are fully interchangeable. Anywhere a decimal value can be specified, a hex 
value can be used instead, and vice-versa:	

	 123	 	
	 0x7b	 ← equivalent value	
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Decimal can only be used for positive values but a preceding minus sign can be used 
to form an expression so, effectively, negative numbers can be specified. For 
example:	

	 -123

Unary negation can be applied to any integer, whether specified in decimal or hex, so 
the following all represent the same 64-bit value:	

	 -4660	 	
	 -0x1234	 ← identical value	
	 0xffffffffffffedcc	 ← identical value	

A number given in hex is not sign-extended by the assembler.	

	 0xc8a4	 ← equal to +51,364	
	 0x000000000000c8a4	 ← identical value	

If a negative number is specified in hex, sign-extension to 64-bits is required. For 
example	

	 0xc8a4	

is equal to -14,172 as a signed, 16-bit value. To specify this value in hex, the leading 
1 bits must be given. This value can be specified in any of the following ways:	

	 0xffffffffffffc8a4
-14172
-0x375C

Note that the following values are equal:	

	 0xffffffffffffffff
-1

If a hex number has fewer than 16 hex digits, it will be interpreted as a positive 
number. Be careful:	
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	 0xfffffffffffffff 	 ← missing an “f”
	 1152921504606846975 	← identical value

Note that the most negative 64 bit value may not be specified in decimal since the 
positive portion exceeds the limit for positive numbers. This value must be specified 
in hex:	

	 -9223372036854775808	 	 ← not allowed	
	 0x8000_0000_0000_0000		 ← use this instead	

Strings are written using double quotes. For example:	

"Hello, world"

The following escape sequences are allowed in strings:	

\0 \a \b \t \n \v \f \r \e  \" \' \\ \xHH

where HH represents any two hex digits. The escape sequences have the traditional 
meanings:	

	 \0 0x00	 ctrl-@	 NULL	
	 \a 0x07	 ctrl-G	 BELL (alert)	
	 \b 0x08	 ctrl-H	 BS (backspace)	
	 \t 0x09	 ctrl-I	 HT (tab)	
	 \n 0x0A	 ctrl-J	 LF (linefeed, newline, NL)	
	 \v 0x0B	 ctrl-K	 VT (vertical tab)	
	 \f 0x0C	 ctrl-L	 FF (form feed, new page)	
 	 \r 0x0D	 ctrl-M	 CR (carriage return, enter)	
 	 \e 0x1B	 ctrl-[	 ESC (escape)	
	 \d 0x7F	 delete	 DEL key	
	 \" 0x22	 "	 double quote character	
	 \' 0x27	 '	 single quote character	
	 \\ 0x5C	 \	 backslash character	
	 \xHH 0xHH	 	 arbitrary byte (where H is any hex character)	

In a string constant, we make a distinction between the string “source” characters 
and the string “value”. For example, in the following string	
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.string "\n"

there are two source characters ‘\’ and ’n’. In the string value, there is only one byte, 
namely 0x0a.	

The string value is a sequence of zero or more bytes, and there is no constraint on 
what byte values or sequences are allowed.	

However, there are constraints on the string source characters.	

The string source may not include any ASCII control characters directly. Instead, the 
programmer may use escape sequences, such as \0, \n, \t, etc.	

One implication is that strings may not contain newlines directly. In other words, a 
string may not span multiple lines. Use \n or \r within the string source instead.	

The .s source file is a “text” file encoded in UTF-8. Non-ASCII characters (as in the 
next example) are allowable in comments and within string source (between the 
quotes in a string constant). Non-ASCII characters are not allowed anywhere else.	

Any Unicode character except ASCII control characters may appear in a string 
source. The control characters (i.e., codepoints 0x00 … 0x1F and 0x7F) may not 
appear directly; instead escape sequences must be used.	

The string source will be translated into a value — a sequence of bytes — encoded in 
UTF-8.	

Consider the following string:	

str: .string "∉"

This string source contains 1 character, a Unicode character called “NOT AN 
ELEMENT OF”.	

The UTF-8 encoding of this character requires three bytes. Thus, this string value 
consists of three bytes.	

The following is exactly equivalent. Both place exactly the same bytes at location 
“str”.	
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str: .string "\xE2\x88\x89"

[ See the document titled “An Overview of Unicode”, which describes UTF-8. ]	

String values are limited in length. This limit is identical to the length limit for 
identifiers.	

The operand of the .string pseudo-op must be a string.	

In addition, a string may be used in an expression in place of an integer. However, in 
this case, the string value must have exactly 8 bytes. The characters will be used to 
construct an 8 byte (i.e., 64 bit) integer value.	

(More precisely, the UTF-8 encoding of the characters will be used.)	

For example, the following are four ways to represent the same 64-bit value:	

"Hello!\n\0"
"\x48\x65\x6C\x6C\x6f\x21\x0A\x00" ← identical value
0x48656C6C6f210A00 ← identical value
5216694956355291648 ← identical value

Character constants are given using single quotes. For example:	

'q'

There must be exactly one character, or an escape sequence representing a single 
byte. The same escape sequences as used in strings are allowed.	

A character constant can be used any place an integer is allowed and is equivalent to 
an integer value between 0 and 255 (i.e., between 0x0000000000000000 and 
0x00000000000000FF).	

For example, the following are equal and can be used interchangeably:	

'\n'
10
0x0A
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Since a character constant is always exactly one byte, only ASCII characters are 
permitted, not arbitrary Unicode characters.	

A floating-point constant is used to specify a double precision (8-byte) floating 
point value. To be differentiated from an integer constant, the value must have either 
a decimal point or an exponent. The exponent is signified by either “E” or “e”.	

Examples of floating point constants:	

.float 123.456

.float -3.4E-21

.float +4.5e+21

Floating point constants are used in the .float pseudo-op, and nowhere else.	

Comments begin with the hash or pound symbol (#) and extend thru end-of-line.	

Punctuation symbols The following have special meaning:	

,	 separates operands
: follows labels
= used for keyword operands in .begin pseudo-op
( expression grouping
) expression grouping
+ addition and unary plus
- subtraction and unary minus
* multiplication
/ integer divison
% remainder after division
& bitwise AND
| bitwise OR
^ bitwise XOR
! bitwise NOT
<< shift left logical
>> shift right logical
<<< shift left arithmetic
>>> shift right arithmetic
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White space The assembler parses each line by first identifying lexical tokens and 
removing comments. Lexical tokens may be separated by “white space”, which is 
defined as spaces and tabs.	

End-of-line The EOL character is treated as a token, not as white space; the EOL is 
significant in syntax parsing. The source file can use \n (i.e., NEWLINE, 0x0A) or \r 
(i.e., RETURN, 0x0D) to indicate the EOL; either will work.	

Instruction Syntax	

Each line in the assembly source file must have the following syntax:	

    [  label  :  ]   [  opcode   operands  ]    [   #   comment  ]   EOL	

(The brackets indicate optional material.)	
	 	 	
The label is optional. It need not begin in column one. It must be followed by a colon 
token. A label may be on a line by itself. If so, it will be attached to the next thing 
following it. In other words, a label will stand for the address of an instruction and 
the instruction can be given on the same line, or on the following line.	

The opcode must be a legal Blitz-64 instruction or a pseudo-op. The opcode is 
always lowercase.	

Operands are separated by commas. The exact syntax of the operands is determined 
by the instruction opcode. Some Blitz-64 instructions take no operands while some 
instructions require several operands.	

A comment is optional and extends to the end of the line if present.	

Each line is independent. The end-of-line (EOL) is treated as a separate token, not as 
white space (as occurs in many programming languages). Every instruction must be 
on only one line, although lines may be arbitrarily long.	

Assembler pseudo-ops have the same syntax. Some permit labels and others forbid 
labels.	

The following formatting and spacing conventions are recommended:	
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• Labels should begin in column 1.	
• The op-code should be indented by 1 tab stop.	
• The operands, if any, should be indented by 1 additional tab stop.	
• Each Blitz-64 instruction should be commented.	
• The comment should be indented by 2 additional tab stops.	
• A single space should follow the # comment character.	
• Block comments should occur before each routine.	
• Comments should be indented with 2 spaces to show logical organization.	

Here is an example of the recommended style for Blitz-64 assembly code. (The 
header line shows standard tab stops.)	

            t       t       t       t       t       t
    #################
    #
    # MyFun
    #
    # This function does such and such. It uses…
    #
    #################
            .begin
            .align  4
            .export MyFun
    MyFun:  stored  0(sp),r2        # Save registers
            stored  8(sp),r3        # .
    loop:                           # LOOP
            loadb   r3,0(r2)        #   IF r4>*r2 THEN
            ble     r4,r3,endif     #   .
            sub     r1,r5,r3        #     r1 := r5-(*r2)
    endif:                          #   ENDIF
            addi    r2,r2,1         #   r2++
    # … etc …
            jump    loop            # ENDLOOP

Of course assembly code produced by a compiler will probably not be commented or 
formatted so nicely.	
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Register Names	

Register names must be in lowercase. Several registers have two names. The 
programmer can use either name. Generally, the alternate name is recommended.	

	 	 Alternate	
	 	     Name    	 Function                  	
	 r0	 	 Zero	
	 r1	 	 Argument 1 / Return Value	
	 r2	 	 Argument 2	
	 r3	 	 Argument 3	
	 r4	 	 Argument 4	
	 r5	 	 Argument 5	
	 r6	 	 Argument 6	
	 r7	 	 Argument 7	
	 r8	 t	 Temp register, used by assembler/linker	
	 r9	 s0	 Work reg (caller-saved)	
	 r10	 s1	 Work reg (caller-saved)	
	 r11	 s2	 Work reg (caller-saved)	
	 r12	 tp	 Thread data pointer	
	 r13	 gp	 Global data pointer	
	 r14	 lr	 Link register	
	 r15	 sp	 Stack pointer	

Register “r0” is the zero register. Its value is always read as zero and writes are 
ignored. The programmer often uses the zero register as a destination when the goal 
is to discard a value.	

Several instructions require the name of a Control and Status Register (CSR).	

There are 16 CSR registers. Their names must be written in lowercase.	
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	 	 	        	 Description       	 	 	          	         	
	 0	 csr_version	 Version of the BLITZ-64 architecture ISA	
	 1	 csr_prod	 Product Identifier	
	 2	 csr_core	 Core number	
	 3	 csr_instr	 Instruction counter (Reset upon power-on-reset)	
	 4	 csr_cycle	 Cycle counter (Reset upon power-on-reset)	
	 5	 csr_timer	 Time of next interrupt, in cycles	
	 6	 csr_status	 System status register	
	 7	 csr_stat2	 Previous System Status Register	
	 8	 csr_trapvec	 Pointer to page table root node	
	 9	 csr_pgtable	 Pointer to page table root node	
	 10	 csr_prevpc	 Previous PC (for trap handler)	
	 11	 csr_cause	 Trap code, indicating which trap just happened	
	 12	 csr_bad	 Offending instruction	
	 13	 csr_addr	 Offending Virtual Address	
	 14	 csr_ptr	 Ptr to Process Control Block (& reg save area)	
	 15	 csr_temp	 Temp work register	

Machine and Synthetic Instructions	

The Blitz-64 instructions are documented separately in	

	 “Blitz-64: Instruction Set Architecture Reference Manual”	

For each instruction, that document describes:	

	 • what operands are used	
	 • what each instruction does when executed	
	 • how each instruction is represented in machine code	

Each line in the assembly program contains either:	

	 • A machine instruction,	
	 • A synthetic instruction, or	
	 • A “pseudo-op” instruction	

( In addition, some lines will contain only labels or comments. Blank lines can be 
used to improve readability. )	
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By “machine instruction”, we mean the line contains the human-readable assembly 
code form of an instruction implemented directly by the Blitz-64 hardware.	

The opcode (such as “addi”) determines exactly which machine instruction is 
intended and exactly which operands are required. Each opcode corresponds to 
exactly one machine code instruction, so there is a one-to-one correspondence 
between machine opcodes (like “addi”) and machine instructions.	

For each machine instruction, there is exactly one allowable syntax for the operands. 
In the case of “addi”, two registers and an immediate value (in that order and 
separated by commas) are required:	

addi  r3,r6,1234

The assembler will translate each machine opcode into a single 32-bit machine code. 
For example, this instruction will be translated to:	

0x0104d263

You can understand this instruction as follows:	

01 machine opcode for “addi”	
	 04d2 hex representation for 1,234

6 register “r6”
3 register “r3” (the destination)

A “synthetic instruction” does not correspond to exactly one machine instruction. 
Instead, the assembler will translate synthetic instructions into machine 
instructions that perform the desired operation.	

For example, the following synthetic instruction:	

neg r7,r3 #  r7 ← -(r3)

will be translated into this machine instruction:	

sub r7,r0,r3 #  r7 ← 0-r3
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It will assembled as if the programmer had used the subtract instruction instead. 
(Note that register “r0” always contains the the value zero.)	

The translation of a synthetic instruction will usually be to a single machine 
instruction. However, some synthetic instructions will require several machine 
instructions and may require as many as four instructions.	

For example, the following synthetic instruction:	

movi r1,0x1122334455667 #  r1 ← very large value

will be translated into the following sequence of three machine instructions:	

upper20 r1,0x11223
shift16 r1,r1,0x3445
xori r1,r1,0x5667

Assembler Pseudo-ops	

A pseudo-op looks very similar to an instruction since it has an opcode and 
operands.	

Pseudo-ops can be easily recognized because they all begin with a period. The 
pseudo opcodes are:	

.byte

.halfword

.word

.doubleword

.float

.string

.skip

.align

.export

.import

.equ

.begin

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	29 284



Chapter 2: Assembler Syntax	

(In addition, there are several pseudo-ops associated with debugging; these are 
listed and discussed in a later chapter.)	

The period is part of the opcode keyword. Spaces are not allowed after the period.	

Machine and synthetic instructions are assembled into binary codes that, when 
executed, tell the processor what to do. Pseudo-ops are not translated into machine 
instructions to be executed at runtime. Instead, pseudo-ops are used to tell the 
assembler what to do and how to produce the object code.	

Pseudo-ops are sometimes called “assembler directives”.	

.byte, .halfword, .word, .doubleword	

The .byte, .halfword, .word, and .doubleword pseudo-ops are used to allocate 1, 2, 
4, and 8 bytes, respectively. For example:	

MyVar: .doubleword 654321 # Allocate and initialize 8 bytes

A single operand (which is an expression) is required. The expression specifies an 
integer value which will be placed in memory before execution begins.	

another: .doubleword (789*5)<<6 # equal to 0x000000000003DA40
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The expression may include values written in decimal or hex, as well as symbolic 
constants. The expression appearing in the operand field may use:	

( expression grouping
) expression grouping
+ addition and unary plus
- subtraction and unary minus
* multiplication
/ integer divison
% remainder after division
& bitwise AND
| bitwise OR
^ bitwise XOR
! bitwise NOT
<< shift left logical
>> shift right logical
<<< shift left arithmetic
>>> shift right arithmetic

The expression will be evaluated and the value will be computed by the assembler 
and not at “run-time”.	

All expression evaluation will be performed using 64 bit signed integers. If the final 
value fails to be within the allowable range for the pseudo-op, the assembler will 
issue an error message.	

	 	       Size	 	
	 	   in bytes  	                                        Range of values                                       	 	
.byte	 1 	 -128 … 127	
.halfword	 2	 -32,768 … 32,767	
.word	 4	 -2,147,483,648 … 2,147,483,647	
.doubleword	 8	 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807	

If a label precedes a pseudo-op or instruction, that symbol will be associated with 
the address of the thing that follows. (More precisely, the symbol will be associated 
with the address of the first byte of the thing that follows.) The label may appear on 
the same line or on the preceding line.	
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For example, this	

myVar: .doubleword 0x0123456789abcdef

is equivalent to:	

myVar:
.doubleword 0x0123456789abcdef

The requirements for alignment in Blitz-64 are discussed elsewhere. In short, data 
should be properly aligned:	

	 • Halfword data should be halfword-aligned	
	 • Word data should be word-aligned	
	 • Doubleword data should be doubleword-aligned	

There is no alignment requirement for byte-sized data.	

If the data is improperly aligned, an exception will be generated at runtime and the 
instruction will invoke an emulation routine. There will be a very heavy 
performance penalty for this. Therefore, the programmer should strive to ensure 
that all variables are properly aligned.	

The .align instruction can be used for this purpose. One approach is to proceed each 
data variable with an .align instruction:	

var1: .byte 0x01
.align 2

var2: .halfword 0x0123
.align 4

var3: .word 0x01234567
.align 8

var4: .doubleword 0x0123456789abcdef

A simple programming trick is to place all doubleword data first, then all word data, 
then all halfword data, and finally all byte data. Only a single .align is required at the 
beginning:	

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	32 284



Chapter 2: Assembler Syntax	

.align 8
var4: .doubleword 0x0123456789abcdef
var3: .word 0x01234567
var2: .halfword 0x0123
var1: .byte 0x01

The .halfword, .word, .doubleword, and .float instructions may be used at 
unaligned locations. The assembler will not issue warnings.	

For the value of the .byte, .halfword,.word, and .doubleword pseudo-ops, the 
programmer may use either absolute value or may use addresses and symbols, 
which may be defined in the same file or imported from another .s source file. For 
example:	

.doubleword MyLabel+4

.doubleword ExternSymbol

In such cases, the linker will not be able to compute the value and will defer to the 
linker, which will compute and fill in the final values.	

The linker computes all values using 64 bits and may compute any value within this 
range. However, for .byte, .halfword, and .word pseudo-ops, there may be 
insufficient space to contain the value.  Therefore, for .byte, .halfword, and .word 
pseudo-ops, the linker may report an error such as:	

The computed value of a HALFWORD instruction is not within -32,768 ... +32,767 
(i.e., 0x8000 ... 0x7FFF).	

The linker will also print additional information, including filename, line number, 
symbol name, and the offending value.	

.float	

The .float pseudo-op is used to allocate 8 bytes and fill it with the IEEE 
representation of a double-precision (i.e., 64-bit) floating point number. The 
operand should be a floating point constant. Expressions are not supported.	
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Examples of floating point constants:	

.float 123.456

.float -3.4E-21

.float +4.5e+21

It should be noted that Blitz-64 supports only double-precision floating point 
arithmetic; single-precision is not supported.	

See the above comments regarding alignment. The assembler will not issue a 
warning when the .float instruction occurs on an improperly aligned address.	

.string	

The .string pseudo-op is used to place character data in memory.	

Escapes (such as \n) can be used. These were described previously.	

The string is not null-terminated. If desired, the null character can be included in 
two ways. For example:	

str: .string "Bye\0"

is equivalent to:	

str: .string "Bye"
.byte 0

The characters are Unicode characters encoded in UTF-8. For example the following 
are equivalent. Since the UTF-8 encoding of “é” is the two byte sequence 0xC3A9, 
both will place 5 bytes in memory.	

.string "café"

.string "caf\xc3\xa9"

Unicode and UTF-8 are described in a separate document titled “An Overview of 
Unicode”.	
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.skip	

The .skip pseudo-op causes the assembler to skip over a number of bytes, without 
specifying initial values. The operand is an expression which is evaluated at 
assembly time.	

The bytes are guaranteed to be filled with zeros before execution begins.	

If a label precedes the .skip pseudo-op, then that symbol is associated with the 
address of the first byte in the block of bytes allocated by the .skip pseudo-op.	

Typically, a .skip instruction is used to define the memory region to be used for a 
large data structure, such as an array:	

MyArray: .skip 1000

However a .skip instruction can be used for any variable. In KPL, all variables are 
guaranteed to be initialized to zero values.	

MyVarWord: .word 0
MyVarWord: .skip 4 	← equivalent

If the .skip instruction appears in a segment that is marked “zero-fill”, then no bytes 
are actually stored in the object file. (The initializing zeros are generated at runtime 
when the program is loaded into memory.) Otherwise, the object file will contain N 
bytes, all filled with zero. Consequently, the programmer should normally place 
uninitialized variables in a zero-filled segment, particularly if they are large.	

This expression used in a .skip instruction cannot rely on imported values or values 
that cannot be determined easily by the assembler.	

[ By “easily”, we mean this. Several synthetic instructions depend on addresses and 
changes to addresses can, in some cases, change the number of machine instructions 
required for a synthetic instruction. The .skip instructions are evaluated before such 
synthetic instructions are evaluated. However, in some cases, the values of 
expressions can depend on addresses, and the translation of synthetic instructions 
may change addresses. The .skip pseudo-op cannot rely on values that cannot be 
determined early in the assembly. This is only an issue for pathological programs; 
normally the value for a .skip instruction is a simple integer. ]	
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.align	

The .align pseudo-op is used to insert padding bytes to force the next following 
thing to be aligned.	

In the following example, the string may end on an improperly aligned address; 
the .align pseudo-op will insert as many bytes as necessary to guarantee that the 
variable “x” is properly aligned.	

str: .string “hello”
.align 8

x: .doubleword 0x0123456789abcdef

The padding bytes inserted by .align are guaranteed to be zero-filled.	

The operand for .align may be 2, 4, 8, 16, or 32. The keyword “page” may be used as 
the operand, instead of an integer:	

.align page

The “.align page” instruction will add padding bytes as necessary to round up to the 
next page aligned address, i.e., to an address that is a multiple of 16,384 (i.e., a 
multiple of 16 KiBytes and in which the least significant 14 bits are zeros).	

The .align statement will insert only as many bytes as necessary. If the address is 
already aligned, then no bytes will be inserted. The inserted bytes are guaranteed to 
have value 0x00.	

The .align statement is not normally preceded by a label. However, if a label is 
present, it will label the first padding byte. If no padding is inserted, the label will 
label will be associated with the address of the following byte.	

In the following example, the value of “strX” will be 5 greater than the value of “str”, 
regardless of how many bytes are inserted by the .align:	

str: .string "hello"
strX: 	

.align 8
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The assembler will keep track of all alignment up to word alignment and can fully 
process the following two types of .align. The assembler will effectively transform 
these into the necessary .skip instructions.	

.align 2

.align 4

The following cannot be fully handled by the assembler and must be passed to the 
linker.	

.align 8

.align 16

.align 32

.align page

[ When expanding synthetic instructions, the linker may move data and instructions 
in memory. However, the linker will always insert and move in multiples of 4. Thus, 
word-alignment will be preserved. ]	

Instructions must be halfword aligned. At runtime, the Blitz-64 program counter 
(PC) will always contain an even number by hardwiring the final bit to 0. Thus, 
alignment is forced and no exception is possible.	

Since the assembler keeps track of halfword and word alignment, it can detect any 
attempt by the programmer to place an instruction at an odd (non-halfword aligned) 
address, and will issue a warning.	

Often, the programmer will place an “.align 2” instruction directly before a code 
sequence (such as a function) to make certain the instructions in the function are 
aligned properly, regardless of what preceded the code sequence.	

.export	

This pseudo-op expects a single symbol as an operand. This symbol must be given a 
value in this file, either with an .equ instruction or used as a label. This symbol with 
its value will be placed in the object file and made available to other assembler 
source programs during linking.	
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For example:	

.export MyFun

.align 4
MyFun: add

…
ret

.export MyConstant
MyConstant: .equ 100

The .export instruction may appear before or after the line that defines the symbol, 
as the programmer prefers. There must be no label on the same line as this 
instruction.	

If a symbol is not exported, then that symbol may only be used within the assembly 
source code file in which it is defined. Other files are free to define, export, and 
import symbols with the same spelling. As long as the symbol is not imported in the 
current file, these other files will define and use separate, unrelated symbols that are 
not visible in the current file.	

.import	

This pseudo-op expects a single symbol as an operand. This symbol must not be 
given a value in this file; instead it will receive its value from another assembly 
source file during linking. All uses of this symbol in this file will be replaced by that 
value by the linker.	

For example:	

.import OtherFun
call OtherFun

The .import instruction may appear before or after lines that use the symbol, as the 
programmer prefers. There must be no label on the same line as this instruction.	
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A symbol must not be both imported and exported. Every symbol used in a given 
source code file will either be:	

	 • imported	
	 • exported	
	 • local only	

.equ	

A symbol may be given a value with an “equate” instruction:	

	 symbol :	 .equ	  expression	

The expression may give an absolute value or a relocatable address. For example:	

Val_123: .equ MyConstant+23 ← specifies absolute value 123
MyAddr: .equ MyFun+8 ← specifies an address

The expression may use symbols that are defined later in the file.	

A line containing  an .equ instruction must begin with a symbol followed by a colon. 
(In all other situations, the symbol in the label field of an instruction will be given as 
its value, the address of the instruction. However, in the case of an equate, the 
symbol is being associated with the result of the expression evaluation.)	

X: .word 100 ← X = address of 4 bytes containing 100
Y: .equ 100 ← Y = 100; no memory or addresses are involved

Some expressions may depend on the value of addresses:	

Z: .equ X+4 ← Z = address of the bytes following variable X	

In some cases, the value cannot be computed by the assembler and the evaluation of 
such expressions must be deferred to the link stage.	

In the following example, the assembler is unable to transform a synthetic jump 
because the target location is defined in another file. The assembler cannot 
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determine whether to produce one or two machine instructions, so it leaves that 
task to the linker. As a result, the assembler is not able to determine the value to be 
associated with “W”. This can cause an error if the symbol is used in a context where 
the assembler must know the value, such as an instruction which requires an 
immediate value. Since the assembler must be able to guarantee that the value will 
fit into the available space (i.e., a 16 bit immediate field), the assembler must be able 
to determine the value at assembly time. In practice, code sequences like this are 
unlikely to occur and will not be produced by the KPL compiler.	

Addr1: …
jump ExtLab ← Could be one or two instructions	

Addr2: …

W: .equ Addr2-Addr1 ← Can’t compute until link time

 addi r1,r2,W ← Error: must know the value at asm time

.begin	

The .begin pseudo-op tells the assembler when to produce a segment of code and is 
used to associate several parameters with the segment.	

Many programs will contain only a single .begin pseudo-op and the programmer 
will place it at the beginning of the assembly code source file.	

Segments are described later, in a separate chapter.	

The .begin pseudo-op has an operand field that can contain a number of comma-
separated parameters.	

.begin parameter , parameter , parameter , parameter

For example:	

.begin startaddr=0x8000a0000,executable,writable
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The following parameters are indicated by a keyword, which is either present or 
absent.	

kernel
executable
writable
zerofilled

The programmer may also include a “startaddr=” parameter:	

startaddr=value	

The programmer may also include a “gp=” parameter:	

gp=value	

Segments are not given names and there must be no label on the .begin instruction. 
Any label directly preceding a .begin pseudo-op will be associated with an address 
in the previous segment.	

As an example to illustrate this, the value of “strEnd” will be an address, namely 
“strStart+5”. The value of “msg” will also be an address, but will very likely be 
different from “strEnd” since the linker will place the new segment at somewhere 
different. Perhaps the new segment will be placed directly following the bytes 
“hello”, but this is not guaranteed. In any case, the assembler will treat “strEnd” and 
“msg” differently because they are in different segments.	

strLen: .equ strEnd-strStart
strStart: .string “hello”
strEnd:

.begin
msg:

.string “world"
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Quick Summary	

• A symbol may be defined in two ways: 	
	 • A label on an instruction defines a new symbol.	
	 • The .equ pseudo-op equates a symbol to the value of an expression.	
• The value of a symbol will either be an absolute value or relocatable address .	
• The assembler can usually evaluate and determine relative offsets.	
• Some expressions using addresses may require finalization by the linker.	
• A symbol may also be imported, in which case its value is unknown.	
• Use of imported symbols will require finalization by the linker.	
	 • Errors involving imported symbols may not be detected until link time.	
• Expressions may use the usual operators: +, -, <<, >>, &, |, …	
• Operator precedence follows traditional languages (C, Java, …).	
• Expressions are used in instructions that take immediate values.	
• Expressions are used in .byte, .halfword, .word, .doubleword, and .skip.	
• All expression evaluation is done using signed, 64 bit integer arithmetic.	
• In situations requiring fewer bits, the assembler will detect overflow errors.	

Symbols	

The assembler builds a symbol table, mapping identifiers to values. Each symbol is 
given exactly one value. There is no notion of scope or lexical nesting levels, as in 
high-level languages.	

Each symbol is given a value which will be either:	

	 absolute	
	 relative	
	 external	
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An absolute value consists of a 64-bit quantity. A relative value consists of a 64-bit 
(signed) offset relative to either a segment or to an external symbol. An external 
symbol will have its value assigned in some other assembly file and its value will not 
be available to the code in this file until link time. However, an external symbol may 
be used in expressions within this file; the actual data will not be filled in until link 
time.	

Symbols may be defined internally or externally. If a symbol is used in this file, but 
not defined, then it must be “imported” using the .import pseudo-op. If a symbol is 
defined in this file and used in other files, then it must be “exported" using 
an .export pseudo-op. If a symbol is not exported, then its value will not be known 
to the linker; if a symbol is imported in some files but never exported, then an 
“undefined symbol” error will be generated at link time.	

If a symbol is neither exported nor imported, it will be entirely local to a single .s file. 
Another file may define another symbol with the same spelling without any 
confusion; it will be an entirely distinct symbol.	

Within a file, a symbol may be defined either…	

	 as a label	
	 in an equate	

A symbol may be defined by being used as a label, in which case it is given a value 
which consists of an offset relative to the beginning of whichever segment is current 
when the label is encountered. This is determined by whether the .begin pseudo-op 
was seen last, before the label was encountered. Each label occurs in a segment and 
names a location in memory. At link time, the segments are placed in their final 
positions in memory. Only at link time does the actual address of the location in 
memory become known. At this time, the label is assigned an absolute value by the 
linker.	

When a symbol is defined using the .equ pseudo-op, it is given a value equal to the 
value of some expression, possibly involving other symbols.	
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Labels	

The label on any instruction will define a new symbol, and the symbol will be given 
an offset relative to the beginning of the current segment.	

Labels defined in the current file may be exported and labels defined in other files 
may be imported.	

A label will name an address in memory, and as such a label cannot be given a final 
value until link time.	

During the assembly of the current file, labels in the file are given offsets relative to 
the beginning of the segment in which they appear.	

Equates	

An .equ pseudo-op must contain a label and an expression. For example:	

MAX:    .equ    1000*8

The symbol defined in an equate may be exported.	

The expression may involved various operations and other symbols, as in:	

SYM_2:  .equ    MAX + 0x18_0000

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	44 284



Chapter 3: Symbols and Expressions	

Expression Syntax and Evaluation	

Instructions and pseudo-ops may use expressions as operands. Expressions may be 
occur in:	

	 .byte	
	 .halfword	
	 .word	
	 .doubleword	
	 .skip	
	 .equ	
	 various Blitz-64 instructions	

The syntax of expressions is given by the following context-free grammar.	

	 expr	 ::=	 expr1   {   “|”   expr1   }	
	 expr1	 ::=	 expr2   {   “^”   expr2   }	
	 expr2	 ::=	 expr3   {   “&”   expr3   }	
	 expr3	 ::=	 expr4   {   (   “<<”   |   “>>”   |   “<<<”   |   “>>>”   )   expr4   }	
	 expr4	 ::=	 expr5   {   (   “+”   |   “-”   )   expr5   }	
	 expr5	 ::=	 expr6   {   (   “*”   |   “/”   |   “%”   )   expr6   }	
	 expr6	 ::=	 “+”   expr6   |   “-”    expr6   |   “!”   expr6	
	 	 	 	 |   ID   |   INTEGER   |   STRING   |   “(”   expr   “)”	

[ In this grammar, the following notation is used. The characters enclosed in double 
quotes are terminals in the grammar. The braces { } are used to mean “zero or more” 
occurrences. The vertical bar | is used to mean alternation. Parentheses are used for 
grouping. The start symbol is “expr”. ]	

This syntax results in the following precedences and associativities:	

	 highest:	 !    unary+    unary-  	 (right associative)	
  	 	 *    /    %	 (left associative)	
	 	 +    -	 (left associative)	
	 	 <<    >>    <<<   >>>	 (left associative)	
	 	 &	 (left associative)	
	 	 ^	 (left associative)	
	 lowest:	 |	 (left associative)	
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For example,	

a + b * c

is equivalent to:	

a + (b * c)

Likewise,	

a + b >> - ! c & d * e

is equivalent to:	

((a + b) >> (- (! c))) & (d * e)

If a string is used in an expression, it must have exactly 8 bytes. The string will be 
interpreted as a 64 bit integer, based on the ASCII values of the 8 characters, or the 
UTF-8 encodings for non-ASCII characters. With strings, Big Endian order is used: 
the first character will determine the most significant byte.	

The following operators are recognized in expressions:	

	 unary+	 nop	
	 unary-	 64-bit signed arithmetic negation	
	 !	 64-bit logical negation (NOT)	
	 *	 64-bit multiplication	
	 /	 64-bit integer division with 64-bit integer result	
	 %	 64-bit modulo, with 64-bit result	
	 binary+	 64-bit signed addition	
	 binary-	 64-bit signed subtraction	
	 <<	 left shift logical (i.e., zeros shifted in from right)	
	 >>	 right shift logical (i.e., zeros shifted in from left)	
	 <<<	 left shift arithmetic (i.e., error if loss of significant bits)	
	 >>>	 right shift arithmetic (i.e., sign bit shifted in on left)	
	 &	 64-bit logical AND	
	 ^	 64-bit logical Exclusive-OR	
	 |	 64-bit logical OR	
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With the shift operators (<<, >>, <<<, and >>>) the second operand must evaluate to 
an integer between 0 and 63. The logical shift operators (<<, >>) will shift in 0 bits. 
The right shift arithmetic operator (>>>) will shift sign bits in on the left. The left 
shift arithmetic operator (<<<) will treat the argument as a signed integer and will 
signal an error if significant bits are shifted out.	

With the division operators (/ and %), the first operand must be non-negative and 
the second operand must be positive. (In the “C” language, the/ and % operators 
have machine-dependent results with negative operands.)	

All operators except addition and subtraction require both operands to evaluate to 
absolute values, which can be determined by the assembler. All arithmetic is done 
with signed 64-bit values.	

If the next two paragraphs are confusing, just look at the examples.	

The addition operator + requires that at least one of the operands evaluates to an 
absolute value. The other operand may be an address. If one operand is an address, 
then the result will be relative to that location. Thus, the assembler will be unable to 
determine the value and the linker (which will place the segments in memory) will 
be required to determine the exact value.	

For the subtraction operator, the first operand may be an absolute value or an 
address. If the first operand is an absolute value, then the second must also be an 
absolute value. If the first operand is an address and the second is an absolute value, 
then the result will be relative to that address. If both operands are addresses, the 
result will be an absolute value, which represents the difference in bytes between 
the two addresses.	
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Lab_1: add r1,r2,r3 ← Lab_1 is a relocatable address
…

Lab_2: add r1,r2,r3 ← Lab_2 is a relocatable address
…

max: .equ 100 ← max is an absolute value
…

u: .equ Lab_1 + 8 ← The value is a relocatable address
v: .equ 8 + Lab_1 ← The value is a relocatable address
bad_1: .equ Lab_1 + Lab_2 ← Error, not allowed
w: .equ max + 8 ← The value is an absolute value
x: .equ max - 8 ← The value is an absolute value
y: .equ Lab_1 - 8 ← The value is a relocatable address
z: .equ Lab_2 - Lab_1 ← The value is an absolute value
bad_2: .equ 8 - Lab_2 ← Error, not allowed

An attempt is made to evaluate all expressions at assembly-time. If the expression 
cannot be evaluated at assembly time, the problem is passed on to the link stage.	

The following will prevent an expression from being evaluated at assembly time.	

	 • The expression depends on symbols which are imported.	
	 • The expression depends on the value of an address.	

Here are the instructions which might depend on the value of an address:	

	 movi
jump
call
bXXX
loadX
storeX

In most uses of the above instructions, the assembler will be able to determine the 
exact offset and produce the final machine code translations. However, in some 
cases, the assembler will be unable to complete the translation of the instruction 
and must pass the task on to the linker.	
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This happens whenever one of the above instructions uses an address and the 
assembler cannot determine the exact offset between the instruction and the target 
address. Whenever the assembler is unable to produce the final machine code, the 
linker will be required to complete the translation.	

Pseudo-ops such as .word and .doubleword may also use expressions which 
contain values that cannot be determined until link time.	

An expression may evaluate to either an absolute 64-bit value, or may evaluate to a 
relocatable value. A relocatable value is a 64-bit offset relative to some symbolic 
address. If the expression evaluates to a relocatable value (i.e., an address), its 
absolute value cannot be determined until link time.	

At link time, the absolute locations of the segments will be determined and the 
absolute values of all symbols will be determined. At link time, the final, absolute 
values of all expressions will be determined by adding the offsets to the addresses 
assigned to the relocatable symbols.	

The .skip pseudo-op requires the expression to evaluate to an absolute value.	

In the case of the .equ pseudo-op, the expression may evaluate to either a 
relocatable address or an absolute value. In either case, the equated symbol will be 
given a relocatable or absolute value (respectively). The actual value may not be 
determined until at link time. Normally, the symbol would be used in other 
instructions, and the computed value will be placed in the appropriate bytes in 
memory at link time.	

NOTE: At this time, all instructions except synthetic instruction of format S-1, …, S-7 
require expressions to have an absolute value that can be determined by the 
assembler before linking. Here are the instructions with formats S-1, …, S-7:	

	 movi
jump
call
bXXX
loadX
storeX

All other instructions require values that must be computable by the assembler 
alone.	
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NOTE: In the case of a subtraction expression where both operands are addresses, 
the assembler must be able to determine the relative offset between the two 
addresses. The computation will not be passed on to the link stage. While the 
assembler is not required to know the actual addresses involved in the subtraction, 
it must be able to determine the exact size of everything between the two addresses. 
This is because the assembler must be able to compute the difference between the 
addresses. This requires that all of the following conditions hold: (1) Both addresses 
must be in the same segment. (2) If any synthetic instructions fall between the two 
addresses, the assembler must be able to fully determine the length of the 
translations, if not their exact translations. (3) If any .align instructions fall between 
the two addresses, the assembler must be able to fully resolve them. This means that 
only halfword and word .align instructions may be used between the two addresses; 
larger .aligns cannot be fully translated by the assembler and must wait for the link 
stage.	
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Quick Summary	

• The linker combines segments to produce an executable file.	
• Each assembly source file will contain one or more segments.	
• Segments are identified with the .begin pseudo-op.	
• All the bytes in each segment are contiguous and placed in memory as a unit.	
• Segments contain instructions and data bytes.	
	 	 • Every instruction and data byte is in exactly one segment. 	
• A segment may be pinned to a specific location or may be relocatable.	
• A segment may be marked as executable or not.	
• Each segment is either read-only or read-write.	
• The “gp” register is used to make addressing faster.	
	 	 • Most accesses to static data can be done in a single gp-relative instruction.	

Segments	

The linker will place code and data into pages of memory. Each page of virtual 
address space will be marked either executable or not, and each page will be marked 
either writable or not. With the Blitz-64 hardware design, any page that is mapped 
into the virtual address space will be readable, so there is no such status as “present, 
but not readable”.	

Each assembly code source file consists of a sequence of “segments”. Each segment 
starts with a “.begin” pseudo-op and consists of a sequence of instructions. The 
segments are listed one-after-the-other in the source code file. Thus, every line in 
the source file will belong to exactly one segment.	

An assembly source file will typically contain just a couple of segments, and 
sometimes only a single segment. For example a given assembly source file might 
contain two segments: The first segment contains instructions and these bytes will 
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go into pages marked “executable” but not “writable”. The second segment contains 
data and variables, and these bytes will go into pages marked “writable” but not 
“executable”.	

A segment may have any size, although the assembler will round each segment up to 
a multiple of 8 bytes, by appending padding zeros at the end as necessary. A segment 
size of zero is possible, but pointless.	

[ Note: When we referred to the “size of the segment” in the previous paragraph, we 
meant the size as the assembler determines it and the number of bytes it puts in 
the .o object file. Later, when the linker is processing a segment, the linker may 
insert bytes in the course of translating synthetic instructions and processing .align 
pseudo-ops. Thus, the size of the segment may be changed by the linker and may no 
longer be a multiple of 8 bytes. Although the assembler adds padding bytes to the 
segment, it would probably have been a better design if the assembler did not add 
those bytes. Instead, the assembler ought to add “padding bytes” to the .o object file 
after the segment data. These padding bytes would be to ensure that the following 
fields in the .o file are properly aligned, and would not increase the size of the 
segment itself. ]	

When placed in memory, each segment will be placed on a doubleword aligned 
address. A single page of memory may contain parts of several segments.	

The term “segment”, as used here, is a purely software concept used only by the 
assembler and linker; at runtime there is no such thing as a segment. (Other 
computer systems have used the term “segment” differently, e.g., for regions of 
memory supported by various hardware features.)	

The purpose of the “.begin” pseudo-op is delineate segments and to specify some 
parameters that apply to the segment, like “writable” or “executable”.	

Below is a small, artificial example, representing a single assembly source code file 
containing three segments:	
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.begin executable
entry: loadd r1,myVar

addi r1,r1,300
stored myVar,r1
ret

.begin writable
myVar: .doubleword 12345
other: .doubleword 200

.begin
str: .string “Hello”

.byte 0
xor r1,r2,r3

Each segment must start with a .begin pseudo-op. A segment runs from a .begin 
pseudo-op until just before the next .begin pseudo-op, or until the end-of-file. Every 
instruction and every other pseudo-op will be located in exactly one segment, based 
on where it is placed.	

There is no requirement that an “executable” segment contains only machine 
instructions; it may contain data as well. There is no requirement that a “writable” 
segment contains only data; it may contain machine instructions as well.	

In this example, the third segment is marked with neither executable nor writable. It 
contains a string and an XOR instruction. This segment is not executable and the 
XOR instruction cannot be executed.	

The .begin pseudo-op has an operand field that can contain a number of comma-
separated parameters.	

.begin parameter , parameter , parameter , parameter

For example:	

.begin startaddr=0x8000a0000,executable,writable
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The following parameters are indicated by a keyword, which is either present or 
absent.	

kernel
executable
writable
zerofilled

The programmer may also include a “startaddr=” parameter:	

startaddr=integer	

The programmer may also include a “gp=” parameter:	

gp=integer	

The “value” associated with a “startaddr=” or “gp=” parameter must be an integer; 
expressions are not allowed. Normally, this value is expressed in hex, but decimal is 
also okay. The following (in which “undefined” is a keyword recognized by the 
assembler) is also allowed:	

gp=undefined	

The parameters can be given in any order.	

Segments are not given names and a source line containing .begin must not contain 
a label. Any label directly preceding a .begin pseudo-op will be associated with an 
address in the previous segment.	

The job of the linker is to determine where in memory to place the segments. More 
specifically, the input to the linker will be a number of object files, each containing a 
number of segments. These segments must be placed into memory pages. One 
constraint is that two segments with different executable/writable attributes may 
not be placed in the same page. Another constraint is that segments may not 
overlap. The linker will attempt to pack segments close together in order to reduce 
the number of pages in the final memory image.	

Normally, the linker will be free to choose the location of a segment. However, the 
programmer may demand that the linker place a segment at a given memory 
address. This is the purpose of the “startaddr=” parameter, which gives the starting 
address of the segment as an absolute value. This parameter forces the linker to 
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place a segment at a particular location in memory. The startaddr= value must be a 
doubleword aligned address.	

If there is no starting address given for a segment, the linker is free to place the 
segment where it best fits. By default, the linker will place segments in the virtual 
address region, which starts at 0x8_0000_0000. The linker will more-or-less place 
segments one after another, filling up the virtual address space from 0x8_0000_0000 
on up, within the previously mentioned constraints.	

However, the presence of the “kernel” keyword will force the linker to place the 
segment in the lower, physical region of address space. Segments with this keyword 
will be placed in low memory, starting with 0x0_0000_0000 and going up.	

The “zerofilled” keyword is used to indicate that a segment will contain only zeros. 
Thus, only the following are allowable in a “zerofilled” segment:	

.byte 0

.halfword 0

.word 0

.doubleword 0

.float 0.0

.skip <any>

.align <any>

.equ <any>

.import <any>

.export <any>

The data in zerofilled segments is not present in the object and executable files, 
since the pages can be created and initialized at the time the executable file is loaded 
into memory. Zerofilled segments are useful for large data structures (such as 
gigantic arrays, spaces for heaps, and so on), since these data structures would 
waste a large amount of space in the object and executable files.	

For example:	

.begin startaddr=0x900000000,writable,zerofilled
MyHeap: .skip 0x100000000 # 4 GiBytes

The assembler will round each segment up in size to a multiple of 8 bytes, by adding 
1 to 7 bytes of 0x00, as necessary. The linker will place each segment on an aligned 8 
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byte address. Or, to put it another way, the linker will assign to each segment a 
doubleword aligned address, where the bytes will be placed when the executable is 
loaded at runtime.	

Note that in Unix/Linux systems, segments are given names such as	

.text	

.data	

.rodata	

.bss	

Blitz doesn’t do it this way. Unix/Linux confuses segment attributes with the 
segment names. We see no good reason to name segments in the first place.	

The Global Pointer Register, gp	

Several of the synthetic instructions include an operand that can be an “address”. 
Examples include:	

	 beq	 Reg1,Reg2,address	
	 loadb	 Reg1,address	
	 storew	 address,Reg2	
	 call	 address	
	 jump	 address	
	 movi	 Reg1,address	

In the course of generating code, the assembler and linker must be able to translate 
memory addresses into the forms required by the machine instructions. For 
example, consider this line from an assembly source file:	

loadb r1,MyVar

Assuming the address of MyVar is within 0 … 0x0_0000_7fff, then the above 
instruction can be assembled as:	

load.b r1,0x7fff(r0)
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The virtual address space starts at 0x8_0000_0000. Thus, this optimization only 
works for programs running in kernel mode, since user programs cannot access data 
using addresses that are not in the virtual memory region.	

However, the global pointer register (gp) is intended to be used for the same 
purpose, making a range of addresses in the virtual address region particularly 
quick to access.	

For user programs running in a virtual address space, the default assumption is that 
the global pointer register (gp) will contain the value 0x8_0000_8000 at runtime.	

In order for this to work, the gp register will be initialized either by the kernel 
during thread-creation or within the first couple of instructions at thread-startup, as 
part of the thread initialization prologue.	

User programs typically place their data at the beginning of the virtual address 
space, i.e., at 0x8_0000_0000. If register gp contains 0x8_0000_8000 — which it 
normally will — then accessing any data within the first 64 KiBytes can be done 
with only one instruction. 	

For kernel code programs, the default assumption is that the global pointer register 
(gp) will contain the value 0x0_0001_0000. In combination with register r0, this 
makes accessing data in the first 96 KiBytes of memory especially efficient. (For the 
first 32 KiBytes, we use a positive offset from r0 and for the following 64 KiBytes we 
use an offset from gp.) 	

By assuming the gp register contains one of these known values, the assembler and 
linker can generate shorter code sequences when translating some synthetic 
instructions.	

The “gp=” parameter tells the assembler and linker what value will be in the register 
gp at runtime.	

The keyword “undefined” can also be used to override any assumption about the 
contents of the gp register. In this case, the assembler and linker will not make any 
assumption about the contents of the gp register for any instructions in that 
segment. This would be used for code in which the gp register (i.e., register r13) is 
used for an entirely different purpose.	

.begin gp=undefined
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When the assembler is synthesizing a MOVI instruction and the value to be loaded is 
within a certain range of values, the assembler may use gp, as shown in the 
following example.	

Consider the following code:	

movi r1,MyVar # Load address into reg
…

# Put data segment in the usual place:
.begin startaddr=0x800000000,writable

Arr: .skip 0x84D0 # Size = 34,000 bytes
MyVar: .doubleword 1234

The MOVI instruction is a synthetic instruction which moves the address of a 
variable into a register. The address of “MyVar” is 	

  0x8,0000,84D0
= 0x8,0000,0000 + 0x84D0
= 0x8,0000,8000 + 0x04D0

Since the assembler can assume that gp contains 0x8_0000_8000, it can translate 
the MOVI into a single ADDI instruction, exactly as if the programmer had coded 
this:	

addi r1,gp,0x04D0

Without this assumption about gp, the assembler would be forced to use two 
instructions, such as:	

upper20 r1,0x80000
addi r1,r1,0x84D0

(This example was simplified. Actually XORI would be used and we failed to account 
for sign extension properly, but you get the idea.)	

More precisely, positive offsets will be used for addresses above 0x8_0000_8000 and 
negative offsets will be used for addresses below that:	

	 8_0000_0000 … 8_0000_7fff	 negative offset 8000 … ffff from gp	
	 8_0000_8000 … 8_0000_ffff	 positive offset 0 … 7fff from gp	
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The assembler/linker can deal with arbitrary addresses, but addresses outside this 
range might require additional instructions or the use of the temp register “t”. 
Therefore, the programmer is encouraged to place commonly used variables at the 
bottom of the virtual address space, in the first 64 KiBytes. The typical practice 
would be to place all static, non-stack data at the bottom of the virtual address 
space, with the code segments in pages following the data pages.	

The above comments about register gp apply not only to MOVI but also to LOAD and 
STORE instructions. LOAD and STORE are used to access data in static, fixed memory 
locations. Thus, the gp-relative addressing scheme of Blitz-64 enables the vast 
majority of accesses to static data variables to be performed with a single 
instruction.	

The BRANCH (Bxx), JUMP, and CALL instructions also use arbitrary addresses as 
targets. For them, PC-relative addressing is more common. However, the gp-relative 
addressing mechanism is still present and gp-relative jumps can be generated 
whenever the target address happens to be in low memory. As a consequence, it 
might make sense to place jump tables in low-memory, so the code can easily branch 
to various entries.	

Kernel code will not be running in a virtual address space, so things are different. All 
addresses will be located in the physical memory region.	

For kernel code, the gp register is assumed to be initialized to 0x0_0001_0000. This 
means that any address in the first 6 pages (i.e., the first 96 KiBytes of memory, 0 … 
0x0_0001_7fff) can be accessed with a single instruction:	

	 0_0000_0000 … 0_0000_7fff	 offset 0 … 7fff from r0	
	 0_0000_8000 … 0_0000_ffff	 negative offset 8000 … ffff from gp	
	 0_0001_0000 … 0_0001_7fff	 positive offset 0 … 7fff from gp	

If the “kernel” keyword is present in the .begin pseudo-op, the default assumption 
is that register gp will contain the value 0x0_0001_0000. If the “kernel” keyword is 
not present, the assumption is that gp contains 0x8_0000_8000.	

If, for some reason, the gp register will have a different value at runtime, the 
programmer can override the default assumption with the “gp=” parameter. If the 
programmer wants to prevent the assembler from producing code which relies on 
the value in in gp, then “gp=undefined” can be used on the .begin pseudo-op.	
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The MOVI / gp Exception  There is one case where the assembler will not use the 
assumed value in gp: Whenever the destination register of a MOVI instruction is the 
gp register itself, the assembler will specifically avoid using any assumed value of gp. 
This exception makes it possible to initialize the gp register.	

For example, it’s likely that gp will need to be initialized right after any thread begins 
execution (in the “thread prologue”) to contain its expected value of 0x8_0000_8000. 
To do this, the programmer might consider using the MOVI instruction. Because of 
this exception, the MOVI is safe to use for this purpose.	

NOTE: The “gp=” parameter is not required on the .begin instruction. If missing, 
then the assembler will determine whether the “kernel” parameter is present. If this 
is a kernel segment, the assembler will assume the default value of 0x0_0001_0000. 
If this segment is not marked “kernel”, then the assembler will make no 
assumptions, since the segment might go into kernel memory or into user memory. 
The assembler will defer to the linker, which will choose the correct default value.	

	 gp = value	 Programmer gives the value.	
	 gp = undefined	 The gp register will not be used for synthetic instructions.	
	 kernel, <no gp=>	 A value of 0x0_0001_0000 will be assumed.	
	 <no kernel>, <no gp=>	 Assembler assumes nothing.	
	 	 Linker assumes: 	 kernel (-k):	 0x0_0001_0000	
	 	 	 user:	 0x8_0000_8000	
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Quick Summary	

• The assembler recognizes a set of synthetic instructions.	
• Synthetic instructions are not implemented in hardware.	
• The assembler translates each synthetic instruction into an equivalent machine 
instruction.	
	 	 • In most cases, the translation is to a single machine instruction.	
	 	 • In the other cases, a couple of instructions will be required.	
• The technique of synthetic instructions expands the effective instruction set.	
	 	 • Hardware is simplified since only machine instructions are executed.	
• In most cases, the assembler can perform the translation.	
	 	 • In some cases, the assembler will have to pass the task to the linker.	
• The algorithm used by the assembler is complex.	
	 	 • The sizes of the translations (1, 2, 3, or 4 instructions) affect address values.	
	 	 • The values of addresses affect how many instructions are required.	
	 	 • Imported symbols introduce uncertainty, further complicating translation.	

Introduction	

The technique of using synthetic instructions yields a great enlargement of the 
instruction set while allowing the underlying hardware to remain very simple.	

In some sense, no new functionality is added to the Instruction Set Architecture 
(ISA). But the presence of the synthetic instructions shows how the underlying 
machine instructions were designed in order to allow easy implementation of 
common operations.	

The programmer need not use synthetic instructions, but they make programming 
much easier and the programs more readable.	
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By keeping the hardware design as simple as possible, we achieve the following:	

	 • The processor core requires fewer transistors and wires.	
	 • The circuit real-estate is smaller.	
	 • More cores can be placed on a single die, leading to improved parallelism.	
	 • The circuits are easier to design, debug, and verify.	

The synthetic instructions are documented alongside the machine instructions in 
the document describing the Instruction Set Architecture (ISA). That document 
contains an entry for each synthetic instruction, specifying what it does and how it is 
used.	

Simple Translations	

A number of synthetic instructions are easy to translate. Such cases:	

	 • Always translate to exactly one instruction	
	 • Have no error conditions	

Next, we list the easy translations and we will say nothing further about them.	

Arithmetic Negation:	

	 Synthetic:	 neg RegD,Reg1	
	 Translation:	 sub RegD,r0,Reg1	

Bit Negation (NOT):	

	 Synthetic:	 bitnot RegD,Reg1
	 Translation:	 xori RegD,Reg1,-1	

Logical Negation (0=False; other=True):	

	 Synthetic:	 lognot RegD,Reg1
	 Translation:	 testeq RegD,r0,Reg1
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Move (Register to Register):	

	 Synthetic:	 mov RegD,Reg1
	 Translation:	 ori RegD,Reg1,0	

Nop:	

	 Synthetic:	 nop
	 Translation:	 addi r0,r0,0

Call (Through Register):	

	 Synthetic:	 callr Reg1
	 Translation:	 jalr lr,0(Reg1)

Jump (Through Register):	

	 Synthetic:	 jr Reg1
	 Translation:	 jalr r0,0(Reg1)

Return:	

	 Synthetic:	 ret
	 Translation:	 jalr r0,0(lr)

CSR Write:	

	 Synthetic:	 csrwrite CSRReg,Reg2
	 Translation:	 csrswap r0,CSRReg,Reg2	

Test If Greater Than:	

	 Synthetic:	 testgt RegD,Reg1,Reg2
	 Translation:	 testlt RegD,Reg2,Reg1

Test If Greater Than Or Equal:	

	 Synthetic:	 testge RegD,Reg1,Reg2
	 Translation:	 testle RegD,Reg2,Reg1
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Test If Greater Than (Floating):	

	 Synthetic:	 fgt RegD,Reg1,Reg2
	 Translation:	 flt RegD,Reg2,Reg1

Test If Greater Than Or Equal (Floating):	

	 Synthetic:	 fge RegD,Reg1,Reg2
	 Translation:	 fle RegD,Reg2,Reg1

Test If Equal To Zero:	

	 Synthetic:	 testeqz RegD,Reg1
	 Translation:	 testeq RegD,Reg1,r0

Test If Not Equal To Zero:	

	 Synthetic:	 testnez RegD,Reg1
	 Translation:	 testne RegD,Reg1,r0

Test If Less Than Zero:	

	 Synthetic:	 testltz RegD,Reg1
	 Translation:	 testlt RegD,Reg1,r0

Test If Lass Than Or Equal To Zero:	

	 Synthetic:	 testlez RegD,Reg1
	 Translation:	 testle RegD,Reg1,r0

Test If Greater Than Zero:	

	 Synthetic:	 testgtz RegD,Reg1
	 Translation:	 testlt RegD,r0,Reg1

Test If Greater Than Or Equal To Zero:	

	 Synthetic:	 testgez RegD,Reg1
	 Translation:	 testle RegD,r0,Reg1
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Absolute Value	

The translation of the “abs” instruction (which computes the absolute value of the 
contents of one register and moves the result into another register) is slightly more 
complex, since the translation results in three machine instructions.	

However, since the translation always results in exactly three instructions and no 
error conditions can arise, it is fairly straightforward.	

Absolute Value:	

	 Synthetic:	 abs RegD,Reg1

	 Translation:	 mov RegD,Reg1
	 	 bgez Reg1,+8
	 	 neg RegD,Reg1

Note that the translation itself, as expressed above, uses synthetic instructions. 
When these are translated, we see the actual translation:	

	 Translation:	 ori RegD,Reg1,r0
	 	 b.le r0,Reg1,+8
	 	 sub RegD,r0,Reg1

Branching Instructions	

Recall that there are only four machine instructions which do a “test and branch” 
operation:	

	 b.eq	 Reg1,Reg2,offset16	
	 b.ne	 Reg1,Reg2,offset16	
	 b.lt	 Reg1,Reg2,offset16	
	 b.le	 Reg1,Reg2,offset16	
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where “offset16” is a 16 bit signed number (i.e., -32,768 … +32,767). The offset will 
be added to the address of the branch instruction (i.e., the current PC) to give the 
address of the branch target.	

Out of these, the following synthetic instructions are constructed:	

	 beq	 Reg1,Reg2,Address	
	 bne	 Reg1,Reg2,Address	
	 blt	 Reg1,Reg2,Address	
	 ble	 Reg1,Reg2,Address	
	 bgt	 Reg1,Reg2,Address	
	 bge	 Reg1,Reg2,Address	

	 beqz	 Reg1,Address	
	 bnez	 Reg1,Address	
	 bltz	 Reg1,Address	
	 blez	 Reg1,Address	
	 bgtz	 Reg1,Address	
	 bgez	 Reg1,Address	

	 bfalse	 Reg1,Address	
	 btrue	 Reg1,Address	

where “Address” is an arbitrary memory location.	

In the first stage of the translation, the assembler will translate the above 
instructions into one of the following four synthetic instructions. The translation of 
these four instructions will be discussed in subsequent sections.	

	 beq	 Reg1,Reg2,Address	
	 bne	 Reg1,Reg2,Address	
	 blt	 Reg1,Reg2,Address	
	 ble	 Reg1,Reg2,Address	

Here are those first-stage translations:	

	 Synthetic:	 bgt	 Reg1,Reg2,Address	
	 Translation:	 blt Reg2,Reg1,Address
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	 Synthetic:	 bge	 Reg1,Reg2,Address	
	 Translation:	 ble Reg2,Reg1,Address

	 Synthetic:	 beqz	 Reg1,Address	
	 Translation:	 beq Reg1,r0,Address

	 Synthetic:	 bnez	 Reg1,Address	
	 Translation:	 bne Reg1,r0,Address

	 Synthetic:	 bltz	 Reg1,Address	
	 Translation:	 blt Reg1,r0,Address

	 Synthetic:	 blez	 Reg1,Address	
	 Translation:	 ble Reg1,r0,Address

	 Synthetic:	 bgtz	 Reg1,Address	
	 Translation:	 blt r0,Reg1,Address

	 Synthetic:	 bgez	 Reg1,Address	
	 Translation:	 ble r0,Reg1,Address

	 Synthetic:	 bfalse	 Reg1,Address	
	 Translation:	 beq Reg1,r0,Address

	 Synthetic:	 btrue	 Reg1,Address	
	 Translation:	 bne Reg1,r0,Address

The Complex Translations	

The remaining synthetic instructions are listed next. We group them into seven 
“formats” which we name “Format S-1” through “Format S-7”.	

In the following, “Value” can be any arbitrary 64-bit value, “Address” can be any 36-
bit address, and “Offset” can be any 36-bit offset value.	
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	 Format S-1	
	 	 movi	 Reg,Value	

	 Format S-2	
	 	 beq	 Reg1,Reg2,Address	
	 	 bne	 Reg1,Reg2,Address	
	 	 blt	 Reg1,Reg2,Address	
	 	 ble	 Reg1,Reg2,Address	

	 Format S-3	
	 	 call	 Address	
	 	 jump	 Address	

	 Format S-4	
	 	 loadb	 RegD,Address	
	 	 loadh	 RegD,Address	
	 	 loadw	 RegD,Address	
	 	 loadd	 RegD,Address	

	 Format S-5	
	 	 storeb	 Address,Reg2	
	 	 storeh	 Address,Reg2	
	 	 storew	 Address,Reg2	
	 	 stored	 Address,Reg2	

	 Format S-6	
	 	 loadb	 RegD,Offset(Reg1)	
	 	 loadh	 RegD,Offset(Reg1)	
	 	 loadw	 RegD,Offset(Reg1)	
	 	 loadd	 RegD,Offset(Reg1)	

	 Format S-7	
	 	 storeb	 Offset(Reg1),Reg2	
	 	 storeh	 Offset(Reg1),Reg2	
	 	 storew	 Offset(Reg1),Reg2	
	 	 stored	 Offset(Reg1),Reg2	
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Addresses are typically specified symbolically. For example:	

	 	 MyLabel:
…
jump MyLabel
…
blt r1,r3,MyLabel	
…
call MyLabel	

In the case of data, addresses are often used like this:	

loadd r1,MyVar
…

	 	 MyVar: .doubleword 1234

Addresses may also be specified as absolute values, as in:	

 loadd r1,MyVar
MyVar: .equ 0x80000000c	

Although unusual, addresses may also be specified using expressions, such as the 
following which offsets from relocatable symbolic address:	

 jump ExternLabel+8
…
.import ExternLabel	

Offsets are typically specified with numbers or symbols that are equated to 
integers:	

	 	 varX: .equ 12
…
loadd r1,varX(sp)
stored 16(r4),r2

However, the offset can be specified using an expression.	

In the case of a “movi” instruction, the Value being loaded into the register can be 
specified in a number of ways:	
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movi r1,0x1234	 An immediate value
movi r1,MyConst	 An equated value	
movi r1,MyVar	 An address of data	
movi r1,MyFun	 An address of code	
movi r1,(MyFun-MyVar)<<8	 Complex expression	
…

MyConst: .equ 0x1234
MyVar: .skip 8
MyFun: add …

In the following sections, you will see that some of the translations make use of the 
temporary register “t” (i.e., r8). The programmer should be aware that the 
assembler and linker may produce code which silently modifies “t”. Even though “t” 
does not appear in the assembly source code directly, any of the following 
instructions may result in a translation that involves “t”.	

bXX
jump
call
storeb
storeh
storew
stored

In the terminology used by compiler-writers, these instructions “kill” register “t”. 
(Note that the translations for movi and loadX or the other synthetic instructions 
will never silently use register “t”.)	

Format S-1: “movi   RegD,Value”	

If Value is an absolute integer whose value can be determined by the assembler, then 
the translation selected will depend on the magnitude of the value involved.	

If Value is -32,768 … +32,767, then the synthetic instruction will be translated as:	

	 Translation:	 xori RegD,r0,Value
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Otherwise, if we know the value of gp and Value is within -32,768 … +32,767 of gp:	

	 Translation:	 addi RegD,gp,offset16

where offset16 = gp - Value.	

Otherwise, if Value is representable with a 36 bit number (-34,359,738,368 … 
+34,359,738,367):	

	 Translation:	 upper20 RegD,upper20
	 	 xori RegD,RegD,lower16

where upper20 and lower16 are computed appropriately.	

If Value is an address, then it is a 36 bit value within  0x0_0000_0000 … 
0xF_FFFF_FFFF. (In decimal, this is 0 … 68,719,476,735). The linker will do 
something a little tricky for addresses in the upper half of this range, i.e., any and all 
addresses in the user address space. The linker will translate the MOVI using only 
two instructions, but since bit 35 is a 1 for addresses in 0x8_0000_0000 … 
0xF_FFFF_FFFF, the instructions will place a negative number in the registers. That 
is, the linker will implicitly sign-extend the address from 36 bits to 64 bits, which 
will make all addresses in the user address space negative. After this sign-extension, 
the value will lie within 0xFFFF_FFF8_0000_0000 … 0x0000_0007_FFFF_FFFF (i.e., 
within -34,359,738,368 … +34,359,738,367) which fits the requirements of the 
translation shown above.	

Addresses are used in JUMP, CALL, Bxx, LOADx, and STOREx instructions. All of these  
instructions will ignore the upper bits, so it doesn’t matter whether the upper bits 
are 0s or 1s.	

KPL will represent all pointers with signed values. For code running in user space, 
addresses will always be negative values.	

Some care must be taken by the programmer. As long as the programmer keeps 
pointers in 64 bit variables, the operations of comparison and incrementing will 
work fine. However, the programmer should remember that the pointers will usually 
be negative numbers.	

One danger arrises when the programmer attempts to specify addresses by 
constants. For example:	
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var myPtr: ptr to int = …
…
if (myPtr == 0x80001234) … Wrong; always false
if (myPtr == 0xFFFFFFF80001234) … Correct

Otherwise, if Value is within 52 bits (-2,251,799,813,685,248 … 
+2,251,799,813,685,247):	

	 Translation:	 upper20 RegD,upper20
	 	 shift16 RegD,RegD,shift16
	 	 xori RegD,RegD,lower16

where upper-20, shift-16, and lower-16 are computed appropriately.	

Otherwise, it’s the case that Value requires a full 64 bits:	

	 Translation:	 upper16 RegD,r0,upper16
	 	 shift16 RegD,RegD,shift16a
	 	 shift16 RegD,RegD,shift16b
	 	 xori RegD,RegD,lower16

where upper16, shift16a, shift16b, and lower16 are computed appropriately.	

If Value is a relocatable address, the assembler will not attempt to determine its 
value. Since segments are generally relocatable (i.e., not pinned with “startaddr=” in 
the .begin instruction), it would usually be impossible for the assembler to 
determine the exact address anyway.	

However, it is much more likely that the assembler can determine the relative offset 
of Address from the current PC. If that offset is representable with a 20 bit number 
(i.e., -524,288 … +524,287), then the synthetic instruction will be translated as:	

	 Translation:	 addpc RegD,offset20

In all other cases, the assembler will not produce a translation and will leave the 
task to the linker.	

(If Value is an address but the assembler cannot determine its offset from the movi 
instruction, it must leave the task to the linker. If Value is an address and the 
assembler can determine the offset from the PC, but the offset exceeds 20 bits, the 
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assembler will leave the task to the linker. The linker will know the exact absolute 
value and may be able to find a translation of only one instruction. If Value involves 
an imported symbol, then the assembler will be clueless about its value and must 
defer to the linker.)	

Note that any address can be loaded into a register with only two instructions, and 
many addresses will require only one instruction. In most cases, the assembler will 
be able to translate the register load with a single instruction. However, the linker 
will be required to handle the cases that involve two instructions. Also note, that 
almost all common small-ish constants (i.e., any number within -32,768 … +32,767) 
can be loaded into a register with only one instruction.	

Format S-2: “bXX   Reg1,Reg2,Address”	

If a conditional branch is jumping to relatively close target location, then the 
translation will be a single instruction. Otherwise, two instructions will be used. 
Three instructions would be needed almost never, but can be used to cover all 
possible target locations.	

[ In Blitz-64, the instruction encoding was chosen so that the range  for a single 
branch instruction is quite large (64 GiBytes). Conditional branches (which 
generally target a location within the same function or method) will almost always 
be translated with only a single instruction. Nevertheless, aberrant, extremal cases 
are also accommodated. ]	

If Address is within -32,768 ... +32,767 from the instruction (i.e., if a 16-bit offset 
from the PC can be used):	

	 Translation of beq instruction:	
	 	 b.eq   Reg1,Reg2,offset16

	 Translation of bne instruction:	
	 	 b.ne   Reg1,Reg2,offset16

	 Translation of blt instruction:	
	 	 b.lt   Reg1,Reg2,offset16

	 Translation of ble instruction:	
	 	 b.eq   Reg1,Reg2,offset16
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If a single instruction cannot be used, then the translation takes a different 
approach. The condition is negated and we jump around one or even two 
instructions. The one or two instructions will then make the jump unconditionally.	

Here’s the idea:	

	 	 if x < y then goto Target	

is equivalent to:	

	 	 if y ≤ x then goto L	
	 	 goto Target	
	 L:	

Note that when the condition “x < y” is negated, we get “x ≥ y”. There is no machine 
code to test for greater-than-or-equal. However, if we swap the order of the 
registers, this test becomes: “y ≤ x”, and Blitz-64 has a machine instruction for this 
test.	

In the following, note that we refer to the “offset from the PC”. The instruction 
making the jump (JAL and JALR) is the location from which the offset will be 
calculated. 	

If Address is within -524,288 ... +524,287 from the jump instruction (a 20-bit offset 
from PC must be used):	

	 Translation of beq instruction:	
	 	 b.ne   Reg2,Reg1,+8 The test is changed & the regs are swapped
	 	 jal    r0,offset20	

	 Translation of bne instruction:	
	 	 b.eq   Reg2,Reg1,+8 The test is changed & the regs are swapped	
	 	 jal    r0,offset20	

	 Translation of blt instruction:	
	 	 b.le   Reg2,Reg1,+8 The test is changed & the regs are swapped
	 	 jal    r0,offset20	
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	 Translation of ble instruction:	
	 	 b.lt   Reg2,Reg1,+8 The test is changed & the regs are swapped
	 	 jal    r0,offset20	

Otherwise, a 36 bit offset will be used:	

	 Translation of beq instruction:	
b.ne   Reg2,Reg1,+12	 The test is changed & the regs are swapped
auipc  t,upper20
jalr   r0,lower16(t)

	 Translation of bne instruction:	
	 	 b.eq   Reg2,Reg1,+12 	The test is changed & the regs are swapped	
	 	 auipc  t,upper20	
	 	 jalr   r0,lower16(t)

	 Translation of blt instruction:	
	 	 b.le   Reg2,Reg1,+12 	 The test is changed & the regs are swapped	
	 	 auipc  t,upper20	
	 	 jalr   r0,lower16(t)

	 Translation of ble instruction:	
	 	 b.lt   Reg2,Reg1,+12 	 The test is changed & the regs are swapped	
	 	 auipc  t,upper20	
	 	 jalr   r0,lower16(t)

For the synthetic branch instructions (beq, bne, blt, …), the target Address must be a 
relocatable address. The assembler does not accommodate absolute values. But 
keep in mind that this sort of branch is extremely rare.	

For example, the following would cause an error message:	

	 	 blt r3,r5,0xE47004	 Absolute targets are not legal	

In the unusual event that the programmer really needs to do a branch using a target 
location expressed as an absolute integer, the following code can be used. (Unlike 
the bXX instructions, the jump instruction will accept absolute integers for the 
target address.)	
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	 	 ble r5,r3,NewLabel 	 Note change in condition & reg swap	 	 	
	 	 jump 0xE47004

NewLabel:

The assembler will translate this as follows, achieving the desired effect:	

	 	 b.le r5,r3,+12 	 	 	
	 	 upper20 t,0x000E4	
	 	 jalr r0,0x7004(t)

Format S-3: “jump/call   Address”	

The two synthetic instructions in Format S-3 are:	

	 	 jump Address
	 	 call Address

Recall that register r14 is the “link register” (also named “lr”). When calling a 
function, the JAL and JALR instructions will save the return address in register lr. A 
JUMP is identical to a CALL, except that the return address is not retained, and is 
sent to “r0” instead. 	

Jumps and calls to an address specified using an absolute integer target address 
(as shown here) are expected to be extremely rare. Nevertheless, the assembler will 
translate such a jump or call.	

	 	 jump 0x000e70400
	 	 call 347810	

If Address is an absolute value within 0 … +32,767, the translation will use a positive 
16 bit offset from zero (i.e., register r0).	

If the Address is within 0xF_FFFF_8000 … 0xF_FFFF_FFFF, then the translation will 
use a negative 16 bit offset from zero. Recall that the hardware always ignores the 
uppermost 28 bits of any 64 bit number, so we can address the upper bytes of the 
memory space with negative numbers.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	76 284



Chapter 5: Synthetic Instructions	

[ You can think of memory as “wrapping around” or, equivalently, taking all 
addresses “mod 0x0000_0010_0000_0000”. For example, zero - 0x4000 = 
FFFF_FFFF_FFFF_C000; with truncation, we have 0xF_FFFF_C000. Note that address 
wrap-around makes the uppermost region of the virtual address space (above the 
stack) a reasonable place to put jump tables. ]	

	 Translation of jump: 	
     jalr    r0,immed16(r0)
	 Translation of call:	
     jalr    lr,immed16(r0)

Otherwise, if Address is an absolute value within -32,768 … +32,767 of the value 
assumed to be in register “gp”:	

	 Translation of jump: 	
jalr    r0,immed16(gp)

	 Translation of call: 	
jalr    lr,immed16(gp)

Otherwise, if Address is any other absolute value (i.e., a full 36-bit address is 
required):	

	 Translation of jump: 	
     upper20  t,upper20
     jalr     r0,lower16(t)
	 Translation of call: 	
     upper20  t,upper20
     jalr     lr,lower16(t)

It is much more likely that the address will be given as a symbolic value, as shown 
next. In many cases, the assembler will be able to determine the relative distance 
between the current PC (i.e., the address of the jump/call) and the target.	

     jump     loop_exit
     call     MyFunction

(The assembler will never attempt to determine the absolute integer address of a 
symbolic label, but it can usually determine the relative offset between two 
locations, as long as both locations are within the same segment.)	
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If the assembler can determine the relative offset, and if the target Address is within 
-524,288 ... +524,287 from the jump/call instruction, then a 20-bit offset from PC 
will be used.	

This is the common case. Most jumps and calls will be to targets that are specified as 
symbolic addresses that the assembler can determine are within 512 KiBytes from 
the location of the jump/call.	

	 Translation of jump: 	
     jal      r0,offset20
	 Translation of call: 	
     jal      lr,offset20

If the assembler can determine the relative offset, but if the relative offset exceeds 
this value, then a 36 bit offset relative to the PC will be used:	

	 Translation of jump: 	
     auipc    t,upper20
     jalr     r0,lower16(t)
	 Translation of call: 	
     auipc    t,upper20
     jalr     lr,lower16(t)

If the assembler cannot determine the target Address or cannot compute a relative 
offset between Address and the current PC, the task of translation will be passed on 
to the linker.	

Format S-4: “loadX   RegD,Address” 	

The memory location in the LOAD and STORE instructions can be specified in two 
ways, as shown in these examples:	

	 	 loadd r7,Address	 ← Move data from memory to register
	 	 stored Address,r7	 ← Move data from register to memory

	 	 loadd r7,Offset(r5)	 ← Add immed. value to reg to give address	
	 	 stored Offset(r5),r7	 ← Add immed. value to reg to give address	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	78 284



Chapter 5: Synthetic Instructions	

[ Earlier, we said that the opcode exactly and uniquely determines the format of the 
operands. This isn’t quite true. The LOAD and STORE instructions are exceptions to 
this and they are the only exceptions.]	

All synthetic LOAD operations — regardless of whether the operand has the form 
“Address” or “Offset(Reg)” — are translated using the following machine instructions.  
(Note that the period “.” in the opcode differentiates between synthetic instructions 
and machine instructions.)	

	 	 load.b RegD,offset16(Reg1)
	 	 load.h RegD,offset16(Reg1)
	 	 load.w RegD,offset16(Reg1)
	 	 load.d RegD,offset16(Reg1)

In this section we’ll use the notation loadX where X stands for b, h, w, or d. 
Likewise, we’ll use the notation load.X as shorthand for load.b, load.h, 
load.w, or load.d.	

Format S-4 includes the four synthetic LOAD instructions that have an address as an 
operand.	

	 	 loadb r7,Address 	 ← Fetch a byte
	 	 loadh r7,Address 	 ← Fetch a halfword (16 bits)
	 	 loadw r7,Address 	 ← Fetch a word (32 bits)
	 	 loadd r7,Address 	 ← Fetch a doubleword (64 bits)

The LOAD instructions in which the memory address has the form “Offset(Reg)” are 
discussed later, under Format S-6.	

The Address can be given in several ways:	

	 	 loadb r7,MyVar 	 ← Symbolic, relocatable location
	 	 loadb r7,MyVar+100 	 ← Symbolic plus/minus integer
	 	 loadb r7,0x00E70040 	 ← Absolute Address

If the assembler can compute difference between the LOAD and the target location, 
then it will produce code using PC-relative addressing. If a symbolic label is used but 
the assembler is unable to determine the relative offset, then the task will be passed 
on to the linker.  (This happens whenever the symbol is externally defined, or 
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whenever the source and target are in different segments, or whenever there is 
something of unknown size between the source and target locations.)	

Otherwise, (i.e., if Address is specified as an absolute integer value known to the 
assembler), the translation will use the translations shown next.	

If Address is an absolute value within 0 … +32,767, the translation will use a positive 
16 bit offset from zero (i.e., register r0).	

If the Address is within 0xF_FFFF_8000 … 0xF_FFFF_FFFF, then the translation will 
use a negative 16 bit offset from register r0. [ Memory “wraparound” and the use of 
negative offsets was discussed in the section “Format S-3: jump/call”. ]	

	 Translation:	 load.X RegD,immed16(r0)

If Address is an absolute number within -32,768 ... +32,767 of the value assumed to 
be in register “gp”:	

	 Translation:	 load.X RegD,immed16(gp)

If Address is an absolute number of any other value:	

	 Translation:	 upper20 RegD,upper20
	 	 load.X RegD,lower16(RegD)

If Address has a PC-relative value that the assembler can determine:	

	 Translation:	 auipc RegD,upper20
	 	 load.X RegD,lower16(RegD)

Note: In some cases, the assembler will be able to determine a relative offset from 
the PC but unable to determine the absolute location. In such cases, the assembler 
will produce the two instruction sequence just shown. If it happens that the target 
location is also within ±32 KiBytes of zero (r0) or register gp, then a single 
instruction would have sufficed, although two instructions were generated.	

This situation is rare and not considered likely to occur in practice because the 
typical programming practice is to put variables and data in one segment (marked 
“writable”) and code in another segment (marked “executable”). The data segment 
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will typically be placed where it can be conveniently accessed with the default value 
assumed to be in register gp (0x8_0000_8000):	

.begin writable,startaddr=0x800000000
Var_1: .doubleword 1234
Var_2: .byte 0x34

	 	

User code cannot access low memory so positive offsets from register r0 are only 
usable by the kernel. Kernel code will place its data in a segment located at the 
beginning of memory:	

.begin kernel,writable,startaddr=0x0
Var_1: .doubleword 1234
Var_2: .byte 0x34

Since the source LOAD instruction and the target data address are in different 
segments, the assembler will be unable to generate a PC-relative address. The 
assembler will be forced to pass the task off to the linker. The linker will determine 
exact addresses and will generate a one-instruction sequence whenever possible.	

This comment also applies to the STORE instructions.	

Format S-5: “loadX   RegD,Offset(Reg1)”	

A second form of the LOAD and STORE instructions allows the address to be 
computed by adding a fixed constant value to the contents of a register. This form is 
particularly useful for accessing variables stored in a stack frame, which is 
commonly done for variables local to a function or method.	

	 loadd	 RegD,local_x(sp)
	 stored	 8(sp),RegD

Another important use of the “Offset(Reg)” addressing form is to access the fields in 
an object. Each field (i.e., “data member”) is located at a known offset within the 
object and the object itself is pointed to by a register.	
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Next, we describe the translation of:	

	 loadb	 RegD,Offset(Reg1)
	 loadh	 RegD,Offset(Reg1)
	 loadw	 RegD,Offset(Reg1)
	 loadd	 RegD,Offset(Reg1)

If Offset is an absolute integer value within -32,768 … +32,767, i.e., if it can be 
represented with a signed 16 bit immediate value:	

	 Translation:	 load.X	 RegD,immed16(Reg1)

If Offset is an absolute integer value within -2,147,483,648 … +-2,147,483,647, i.e., if 
it can be represented with a signed 32 bit value:	

	 Translation:	 upper16	 RegD,Reg1,upper16	
	 	 load.X	 RegD,lower16(RegD)	

Otherwise, Offset requires a full 36 bits:	

	 Translation:	 upper20	 RegD,upper20	
	 	 add	 RegD,RegD,Reg1 	 	
	 	 load.X	 RegD,lower16(RegD)

The assembler is unable to handle that case where Offset is given by a relocatable 
label, as shown below. Such cases will be passed off to the linker.	

MyArr: .skip 100000
   …

loadd r7,MyArr(r3)

It is often the case where the programmer has an address in a register and wishes to 
use that address directly, without any offset. To do this, the programmer can code it 
as illustrated by the following example.	

loadd r7,0(r3)

which will be assembled identically to the following machine instruction:	

load.d r7,0(r3)
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We considered adding additional synthetic forms to accommodate shorthand such 
as shown in the following examples. But we decided against it because it violates the 
fundamental Blitz-64 design goal of avoiding complexity.	

loadd r7,(r3) ← Syntax error
stored (r3),r7 ← Syntax error

Additional Detail  We have called the expression “Offset” and implicitly assumed 
that the register contains a “base” address. The effective address will be 
“base+offset”. This is typical of addressing fields in an object, where the register 
contains a pointer to the object and the literal, immediate value is the offset of some 
field in that object.	

However, the literal, immediate expression might supply the base address and the 
register might contain an offset. This is common for accessing arrays that are located 
at statically determine addresses. The address of the array is coded directly into the 
instruction.	

In this comment, we discuss the range of legal values for the literal, immediate value 
“Expression”.	

In general, the Expression may be any address (i.e., any value within 0x ... 
0xF_FFFF_FFFF) in which case the value to be used will be adjusted to a signed 36-
bit value (i.e., within 0x8_0000_0000 ... 0x7_FFFF_FFFF). This is equivalent; the 
lower-order 36 bits are identical, and there are no more bits than that in the address 
calculations performed in hardware.	

The Expression may also be an offset, in which case it is reasonable to allow a 
negative value down to -0xF_FFFF_FFFF (i.e., 0xFFFF_FFF0_0000_0001). For 
example, consider the case where the programmer has placed a very high address 
(such as 0xF_FFFF_1234) in register r1.	

An offset of -0xF_FFFF_1231 can be used to address location 0x0_0000_0003. 
Working through this example, -0xF_FFFF_1231 is a negative number and is 
represented as 0xFFFF_FFF0_0000_EDCF. This offset will be truncated to 36 bits and 
sign-extended, giving 0x0_0000_EDCF. This is the value that will go into the machine 
instructions. At runtime, adding 0x0_0000_EDCF to 0xF_FFFF_1234 gives 
0x10_0000_0003, which will get truncated by the hardware to 0x0_0000_0003, 
exactly the address that is desired.	
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Thus, the linker will accept any value for Expression within -0xF_FFFF_FFFF .. 
0xF_FFFF_FFFF (i.e., -68,719,476,735 … + 68,719,476,735) without complaint or 
warning. Any value for Expression outside this range will result in an error message.	

This scheme allows location 0 to be reached from the highest address 
(0xF_FFFF_FFFF) and it allows the highest address (0xF_FFFF_FFFF) to be reached 
from address 0. Since LOAD and STORE instructions are designed for memory 
access, any Offset value beyond 36 bits must be in error.	

For example, consider reaching address 0 from address 0xF_FFFF_FFFF. This 
requires an offset of -0xF_FFFF_FFFF. Expresses as 36 bits, this value is 
0xFFFF_FFF0_0000_0001 = 0x0_0000_0001. Adding, we get 0x0_0000_0000, as 
desired.	

However, note that the assembler will only accept values for Expression within a 
more limited range of 0xFFFF_FFF8_0000_0000 … 0x0000_0007_FFFF_FFFF (i.e., 
-34,359,738,368 .. +34,359,738,367 which is -0x8_0000_0000 … +0x7_FFFF_FFFF). 
If the assembler can determine the value and this value is outside this range, the 
assembler will generate an error and fail. In the next paragraph, we explain why this 
should never be a problem.	

If the programmer uses a memory address for Expression, the assembler will always 
defer instruction synthesis to the linker. So, in the only case where the assembler 
might potentially generate an error, we can assume that the “base” address must be 
placed in the register, and Expression is an “offset”. In other words, the given 
Expression must be an offset from an address, not an address itself. For user mode 
programs we can assume the address in the register must be an address in the user 
address space. The range limit for the offset expression will still allow any address in 
user space to be reached from whatever address was in the register. Likewise, for 
kernel mode programs, we assume that any address calculation will be from an 
address in the kernel space to another address in the kernel space. Thus, the range 
limit imposed by the assembler should never be a problem, regardless of what 
address will be in the register and what offset was supplied. However, in the event 
that an Expression outside the assembler’s limit is desired and the assembler is 
balking, there is a simple work-around. The large value can be placed in a separate .s 
file, assembled independently, and exported to the source file needing it. Since the 
assembler will not have access to the value of the Expression, it defer synthesis to the 
linker, which accommodates the full range of offsets.	
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Of course, any value beyond the linker’s range make no sense. The value will be 
added to the contents of the register and will be used as an address for a LOAD or 
STORE instruction. Since the hardware addition is limited to 36 bits, the upper bits 
are pointless.	

Format S-6: “storeX   Address,Reg2”	

The memory location in the STORE instructions can be specified in two ways, as 
shown by these examples:	

	 	 stored Address,r7	 ← Move data from register to memory
	 	 stored Offset(r5),r7	 ← Add immed. value to reg to give address	

This section discusses instructions using the first form.	

All synthetic STORE operations — regardless of whether the operand has the form 
“Address” or “Offset(Reg)” — are translated using the following machine 
instructions:	

	 	 store.b offset16(Reg1),Reg2
	 	 store.h offset16(Reg1),Reg2
	 	 store.w offset16(Reg1),Reg2
	 	 store.d offset16(Reg1),Reg2

In this section we use the notation storeX where X stands for b, h, w, or d. 
Likewise, we’ll use the notation store.X as shorthand for store.b, store.h, 
store.w, or store.d.	

Format S-6 includes the four synthetic STORE instructions that have an address as 
an operand.	

	 	 storeb Address,Reg	 ← Store a byte
	 	 storeh Address,Reg	 ← Store a halfword (16 bits)
	 	 storew Address,Reg	 ← Store a word (32 bits)
	 	 stored Address,Reg	 ← Store a doubleword (64 bits)
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The STORE instructions in which the memory address has the form “Offset(Reg)” are 
discussed later, under Format S-7.	

The Address can be given as an absolute integer value or as a relocatable symbol.	

If Address is an absolute value within 0 … +32,767, the translation will use a positive 
16 bit offset from zero (i.e., register r0). If the Address is within 0xF_FFFF_8000 … 
0xF_FFFF_FFFF, then the translation will use a negative 16 bit offset from register r0.	

	 Translation:	 store.X immed16(r0),Reg2

If Address is an absolute number within -32,768 ... +32,767 of the value assumed to 
be in register “gp”:	

	 Translation:	 store.X immed16(gp),Reg2

If Address is an absolute number of any other value:	

	 Translation:	 upper20 t,upper20
	 	 store.X lower16(t),Reg2

If Address has a PC-relative value that the assembler can determine:	

	 Translation:	 auipc t,upper20
	 	 store.X lower16(t),Reg2	

Note: The temporary register “t” is used in some of the translations for STORE, 
although “t” is never used for LOAD instructions.	

When translating LOAD, the assembler can use the target register for any address 
calculation, since it will obviously be available for use as a work register directly 
before the load.X instruction. However, there is no such free register for use in the 
translation of STORE instructions. Instead, register “t” will be used.	

The programmer should not forget that a synthetic STORE instruction may result in 
code that overwrites the register “t”.	
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Format S-7: “storeX   Offset(Reg1),Reg2”	

Next, we describe the translation of instructions in which the target memory 
address is computed by adding a fixed constant value to the contents of a register.	

	 storeb	 Offset(Reg1),Reg2
	 storeh	 Offset(Reg1),Reg2
	 storew	 Offset(Reg1),Reg2
	 stored	 Offset(Reg1),Reg2

If Offset is an absolute integer value within -32,768 … +32,767, i.e., if it can be 
represented with a signed 16 bit immediate value:	

	 Translation:	 store.X	 immed16(Reg1),Reg2

If Offset is an absolute integer value within -2,147,483,648 … +-2,147,483,647, i.e., if 
it can be represented with a signed 32 bit value:	

	 Translation:	 upper16	 t,Reg1,upper16	
	 	 store.X	 lower16(t),Reg2	

Otherwise, Offset requires a full 36 bits:	

	 Translation:	 upper20	 t,upper20	
	 	 add	 t,t,Reg1 	 	
	 	 store.X	 lower16(t),Reg2

The assembler is unable to handle that case where Offset is given by a relocatable 
label, as shown below. Such cases will be passed off to the linker.	

MyArr: .skip 100000
   …

stored MyArr(r3),r7

It is often the case where the programmer has an address in a register and wishes to 
use that address directly, without any offset. To do this, the programmer can code it 
as illustrated by the following example.	

stored 0(r3),r7  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Quick Summary	

•	The linker tool is called “link” and is run after the assembler.	
•	The linker takes a “.o” object file as input and produces an executable file.	
	 —	 The linker can combine several object files into one executable.	
•	The linker can also take library files as input.	
	 —	 The linker will pull out any object module that is referenced.	
•	The linker determines memory locations for each segment.	
• The linker matches all imported and exported symbols.	
	 —	 An error is reported if an imported symbol is not exported exactly once.	
	 —	 This is the “undefined symbol” error.	
•	The linker determines the exact values for all symbols.	
• The linker translates all remaining synthetic instructions into machine code.	
• The linker inserts bytes as necessary for .align pseudo-ops.	
• The linker algorithm is complex and is described in an appendix.	

Using the Linker	

The Blitz-64 linker tool is named “link”. In the simplest use, it converts a single 
object file into an executable file:	

link  hello.o  -o hello

The linker can combine several object files into a single executable:	

link  file1.o  file2.o  file3.o  -o myPgm
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The executable filename must always be given. It doesn’t default to “a.out”, but you 
can always say:	

link  file1.o  file2.o  file3.o  -o a.out

The linker can also be suppled with library files as input. There can be zero or more 
library files as input:	

link hello.o MyLib1.lib MyLib2.lib MyLib3.lib -o hello

Typically, the object files have a filename extension of “.o” and the library files have 
an extension of “.lib”, however this is not enforced by the linker. The linker ignores 
the extension and determines whether the input file is an object file or a library by 
looking at the contents of the file. Object files and library files begin with “magic 
numbers” and these are used to determine what type of file is actually present.	

Concerning the names of library files, the filename is given directly, just as for other 
command lines. (In Unix/Linux, something like “-lm” can indicates a file with name 
“libm.a” and/or “libm.so”. Furthermore, this can result in a search of the directory 
hierarchy. This complex behavior is absent in Blitz-64.)	

Error Messages	

The linker will sometimes print errors and/or warnings.	

In all cases, an error will cause the EXIT_FAILURE code to be returned from the 
linker command to the shell that invoked it. No executable file will be produced. If 
only warnings are generated, an executable file will be produced.	

The error and warning messages are printed on stderr. For some messages, 
additional information will be printed on stdout.	

Here are the most important error messages, all of which arise from programming 
mistakes:	

***** LINK ERROR: Undefined Symbol: xxx was imported on line xxx in 
module "xxx" (file "xxx"/"xxx"). No matching export can be found. 
*****
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***** LINK ERROR: Symbol "xxx" is equated to "xxx" which is imported. 
However, no matching export can be found. (line xxx from file 
"xxx"/"xxx") *****

***** LINK ERROR: The symbol "xxx" was used on line xxx of module 
"xxx" (file "xxx"/"xxx"). This symbol was imported but no matching 
export was found. *****

***** LINK ERROR: This program contains no bytes. *****

***** LINK ERROR: Every program must have an exported symbol "_entry" 
*****

***** LINK ERROR: Symbol "_entry" is not a valid address within this 
program *****

***** LINK ERROR: The EQU symbols xxx (from module "xxx") and xxx 
(from module "xxx") are cyclicly defined *****

***** LINK ERROR: When synthesizing this LOADx instruction, an offset 
value that was not in -0xF,FFFF,FFFF ... +0xF,FFFF,FFFF was 
encountered. *****

***** LINK ERROR: When synthesizing this STOREx instruction, an 
offset value that was not in -0xF,FFFF,FFFF ... +0xF,FFFF,FFFF was 
encountered. ****

***** LINK ERROR: Symbol xxx is exported multiple times (from module 
"xxx" in library "xxx" and module “xxx" in library "xxx") *****

***** LINK ERROR: Symbol xxx is exported multiple times (from module 
"xxx" from file "xxx" and module "xxx" from file "xxx") *****

***** LINK ERROR: These segments have different (executable, 
writable) attributes but try to occupy the same page. *****
(Segments are also printed)

***** LINK ERROR: In computing the value of the EQU symbol 
"xxx" (from module "xxx"), overflow has occurred *****
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Additional Errors	

There are a large number of additional error conditions which are less common. 
Each of these conditions will cause an immediate termination of the linker after 
printing the error message.	

These errors fall into these classes:	

•	 Invalid Command Line Note that the command line option -h is always valid 
and will do nothing but produce some help info about what command line 
options are expected.	

•	 Problems with the Format of an Input File The linker performs a number of 
tests and checks on the format of object and library files. If something seems 
wrong with an input file, the linker will terminate immediately. Such a message 
is likely to be the result of a bug in the assembler or createlib tools.	

•	 Memory Allocation Failure There is not enough memory for the linker to 
allocate its internal data structures.	

•	 I/O Error A problem was reported by the host OS during a system call to read 
input files or write output files.	

•	 Failure of the Linker to Find a Placement for the Segments The algorithm 
used by the linker is reasonably clever but may, for some extreme cases, fail to 
find a solution. That is, when placing the segments in memory, the linker was 
unable to find legal locations for all the segments. Since each program has a 
0x8_0000_0000 byte (i.e., 32 GiByte) address space, any program causing such 
a failure would have to be extraordinarily large.	

•	 Program Logic Error The linker performs a large number of internal 
consistency checks. If any test fails, the linker will print a message and halt.	
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Warning Messages	

The following messages are not fatal but probably indicate programmer errors:	

***** LINK WARNING: When synthesizing this Bxx instruction, an 
illegal target address was encountered. (Use -w1 to suppress this 
warning.) *****

***** LINK WARNING: When synthesizing this JUMP/CALL instruction, an 
illegal target address was encountered. (Use -w1 to suppress this 
warning.) *****

***** LINK WARNING: When synthesizing this LOADx instruction, a 
target address that was not in 0x0 ... 0xF_FFFF_FFFF was 
encountered. (Use -w1 to suppress this warning.) *****

***** LINK WARNING: When synthesizing this STOREx instruction, a 
target address that was not in 0x0 ... 0xF_FFFF_FFFF was 
encountered. (Use -w1 to suppress this warning.) *****

***** LINK WARNING: For reasons that are too complicated to explain, 
a NOP was inserted following the translation for this synthetic 
instruction. This shouldn't hurt anything, but in the interest of 
full disclosure, it may slightly degrade performance. (Command 
option -w2 will suppress this warning.) *****
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Quick Summary	

•	There are a number of assembler pseudo-op instructions for debugging support.	
• The debugging pseudo-ops allow the compiler to provide information to the 
debugger.	
•	The compiler will add debugging pseudo-ops to the .s file.	
	 	 — Human assembly programmers will not typically use these pseudo-ops.	
• The debugging pseudo-ops are not necessary for execution and only play a role 
when the debugger is activated.	
• The debugging pseudo-ops direct the assembler to add debugging information to 
the .o file.	
• The linker will process the debugging information and add it to the executable file.	
• The debugging information will be placed at the end of the executable file.	
• The debugging information will be ignored when the program is loaded for 
execution.	
• If a debugging tool is used, it will read the debugging info from the executable file.	
• The debugging information describes:	
	 	 — Function and method names	
	 	 — Local variable names, types, and locations	
	 	 — Global variable names, types, and locations	
	 	 — Source level statement types and locations	
• The debugger will use it to display information in a way that is more human-
readable.	
• The debugging information includes source file name and line numbers which can 
be displayed to assist the programmer during debugging.	
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Debugging Pseudo-ops	

The following pseudo-op are used to convey debugging information to the debugger.	

.sourcefile

.function

.endfunction

.regparm

.local

.global

.stmt

.comment

These pseudo-ops are normally produced by the compiler and inserted into the .s 
assembly code file it produces.	

These pseudo-ops will not in any way influence how the program executes and 
which error and exception conditions can occur.	

Normally, human assembly language programmers will not bother to use any 
debugging pseudo-ops. Presumably, an assembly programmer thinks more in terms 
of labels and and machine instructions, so these pseudo-ops are not always 
meaningful for programs.	

However, nothing prevents the human assembly language programmer from using 
the debugging pseudo-ops. The assembler and linker tools will perform error 
checking designed to catch egregious errors that might cause problems with the 
assembler, linker, and debugger tools. However, nothing prevents the human 
programmer from making minor mistakes that cause the debugger general 
confusion and to print out gibberish in its attempt to display debugging information 
in human-friendly terms.	

A label is not allowed on any of the debugging pseudo-ops. Most of them require 
additional operands, which will be discussed later.	
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The .sourcefile Pseudo-op	

The .sourcefile pseudo-op is used to associate a source file name with all the code in 
the .s file. It requires two operands, both of which must be strings. The strings will 
be passed on to the debugger and will be associated with all other debugging 
information in the file.	

.sourcefile "Filename","OtherInfo"

Here is an example usage.	

.sourcefile "MyPackage.c","KPL v1.0; Compiled 25-12-2019 19:30"

The .sourcefile pseudo-op must be placed near the top of the .s file, before any 
other debugging pseudo-ops. If the file contains any debugging pseudo-ops, then it 
must contain a .sourcefile pseudo-op. The .s file must not contain multiple 
occurrences of this pseudo-op.	

The Filename string is passed through to the debugger, but is not otherwise 
examined by the assembler or linker. This string is required but may be empty. The 
debugger will display the Filename to the programmer, since a line number alone is 
insufficiently meaningful. The Filename should be the file within which the line 
numbers have meaning.	
 	
The OtherInfo string is intended to contain any additional documentation 
information, such as the nature of the tool that produced the .s file and perhaps the 
date and time at which the file was created. This information is passed through to 
the debugger, but is not otherwise examined by the assembler or linker. This string 
is required but may be empty.	

	

The .function Pseudo-op	

The .function pseudo-op is used to associate a source name with a function or 
method. (For code bodies, the debugging information makes no distinction between 
functions and methods.)	

.function "SourceName", line=NNN, framesize=NNN

.endfunction
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Here is an example usage:	

P_Foo_34:
.function "foo", line=57, framesize=32
store.d -8(sp),lr
addi sp,sp,-32
…
addi sp,sp,32
load.d lr,-8(sp)
ret
.endfunction

The .function and .endfunction instructions act as pair to indicate which 
instructions originated from a single source code function or method. The .function 
should be placed directly before the first instruction of the entry prologue and 
the .endfunction should be placed directly after the last instruction of the function.	

A function may contain several RETURN statements and the compiler may elect to 
include several copies of the exit epilogue in the code. Regardless of how many the 
compiler includes, there must be exactly one .endfunction and it must be placed 
after the last instruction that belongs to the function.	

The .function pseudo-op requires a SourceName string, which is the name of the 
function or method, as it appeared in the original source file. Due to name mangling, 
the label in the assembly file may not match the original name chosen by the human.	

The .function pseudo-op requires the number of the line number on which this 
function was defined. A zero value is legal and indicates missing information.	

The .function pseudo-op requires the size of the stack frame (i.e., the activation 
record) and this is given in bytes. Since frames are always a multiple of 8 bytes in 
size, this number must be, too. It may be zero, but may not be negative. A leaf frame 
will always have a frame size of zero; a non-leaf frame will have a frame size of at 
least 8.	

For leaf functions, the debugger will assume that the return value of the current 
function is in register lr. For non-leaf functions, the debugger will assume that the 
return value of the current function is at offset -8(fp). Here, we use fp (frame 
pointer) to mean the address of the caller’s frame. The debugger will compute fp as 
sp - framesize.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	96 284



Chapter 7: Support for Runtime Debugging	

In the example above, note that the frame size in .function (i.e., 32) is the same 
number used in the entry prologue and exit epilogue. This should always be true, or 
else the debugger may become confused when looking at the stack.	

The .function and .endfunction instructions form a bracket. 
Any .stmt, .comment, .local or .regparm that occurs between them will be 
associated with that function. Every .stmt, .comment, .local, and .regparm must 
occur between a .function and an .endfunction pseudo-op.	

The byte range given by the .function and .endfunction instructions are all 
associated with that function.	

During debugging, if execution is halted, the debugger can look at the current value 
of the PC to determine whether execution was halted within a known function.	

There is no requirement that SourceNames for functions be unique; due to 
renaming in different packages, the same name may be used for different things. An 
empty string is legal and indicates missing information.	

The .global Pseudo-op	

Consider a KPL variable definition that occurs outside any function or method code. 
Thus, the variable is a “global” variable:	

var myVar: int = 123

The purpose of the .global pseudo-op is to associate debugging information with the 
memory locations that will store this variable’s runtime value.	

The general form is:	

.global "SourceName",line=LineNumber,type="TypeCode"

For example:	

P_MyPack_MyVar_19:
.global "myVar",line=24,type="I"
.doubleword 123
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The .global should be placed immediately before the variable as shown above, so as 
to associate the SourceName with the correct memory address.	

As before, the SourceName, and the LineNumber associate attributes with a 
memory location. There is no requirement that SourceNames for global variables be 
unique; due to renaming in different packages, the same name may be used for 
different things.	

The TypeCode is a string which gives the debugger information about the KPL type 
of the variable. From this, the debugger will determine how many bytes the variable 
occupies as well as how best to display the variable’s value.	

The following type codes are used:	

Easy Types:	
	 I	 int	 64-bit signed integer	
	 W	 word	 32 bit signed integer	
	 H	 halfword	 16 bit signed integer	
	 C	 byte (C = Char)	 8 bit signed integer or ASCII char	
	 L	 bool (L = Logical)	 TRUE / FALSE, 8 bits	
	 D	 double	 64 bit double-precision floating point	
	 S	 String	 Ptr to array of bytes	

Hard Types:	
	 P	 ptr	 Pointer to anything, 64 bits	
	 A	 array	 	
	 O	 object	 	
	 R	 struct (R = Record)	 Size and types of fields is unspecified	
	 U	 union	 Size and types of fields is unspecified	

A String is a pointer to an array of bytes. These are commonly used in KPL to to 
represent UTF-8 encoded Unicode strings. Strings are common enough to warrant 
their own type code. A String object can be printed by the debugger, although the 
debugger should make no assumptions about whether the bytes are UTF-8 codes.	

Each object carries a dispatch pointer at runtime and this pointer points to a jump 
table which also contains a pointer to a Class Descriptor. The debugger may be able 
to extract some information from these data structures in the target program’s 
address space so that it can print out some info about the object.	
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For pointers, arrays, structs, and unions, the debugger is provided with no further 
information. Thus, it can’t display the value of such variables, other than as a 
sequence of bytes.	

Possible Extensions That Were Considered  The one-letter type system described 
above is obviously limited and could be extended, as described here.	

For all “easy" types, the type code string will consist of a single character.	

For “hard” types, the idea is that the initial character may be followed by additional 
characters. That is, we will allow the type code string to contain additional 
characters beyond the first character.	

These additional characters encode additional type information for some types. For 
example, the type	

	 ptr to XXX	

can be encoded with the string	

	 "PX"	

where X is the type code string for type XXX. For example:	

type	 encoding	
ptr to int	 "PI"	
ptr to ptr to word	 "PPW"

This also works for arrays. For example:	

type	 encoding	
array of int	 "AI"	
ptr to array of ptr to array of bool	 "PAPAL"	

If the additional characters are present, the debugger can use them for a more 
human-readable display of values. In the additional characters are missing, the 
debugger will be less adept at printing values for these types.	
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At this time, there is no proposal for additional characters following these codes.	

	 O	 object	 	
	 R	 struct (R = Record)	 	
	 U	 union	 	

Even the extension proposed is not able to fully accommodate the KPL type system. 
Consider this KPL code:	

	 type MyType = ptr to MyType	
	 var x: MyType	

The type code for x would be “PPPPP…”. While this example is contrived, it shows the 
existence of a deeper problem.	

We could propose an encoding that addresses the problem of an object/struct/
union that contains a pointer to same type, but it will be complicated.	

However, a complex type system is just not needed and will violate our fundamental 
goal of keeping Blitz simple.	

The .local and .regparm Pseudo-ops	

Consider a KPL variable that is local to some function or method code. This could be 
a parameter or a local variable:	

function foo (myParm1: bool, myParm2: MyClass) 
  var myLocal: int = 123
  …
endFunction

The purpose of the .regparm pseudo-op is to associate debugging information with 
a register that will be used to pass a parameter.	

The purpose of the .local pseudo-op is to associate debugging information with 
stack locations that will store the values or parameters and local variables.	
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The general forms are:	

.regparm RegNum,"SourceName",line=LineNumber,type="TypeCode"

.local Offset,  "SourceName",line=LineNumber,type="TypeCode"

For example:	

P_Foo_34:
.function "foo", line=57, framesize=32
.regparm 1, "myParm1", line=57, type="L"
.local 32, "myParm2", line=57, type="O"
.local 8, "myLocal", line=58, type="I"
store.d -8(sp),lr
addi sp,sp,-32

Typically, the .regparm and .local instructions will be placed immediately after 
the .function as shown above.	

The RegNum is a number (1 .. 7) which tells which register the parameter is passed 
in: r1 … r7.	

The Offset tells where in the stack a parameter or local can be found. Note that the 
offsets are relative to the stack top pointer after the function or method prologue. In 
a leaf function, the sp register will not be changed, so this doesn’t make any 
difference. However, for non-leaf functions it matters. In this example, the frame size 
is 32 bytes and the function prologue adjusts register sp by this amount.	

Parameter myParm2 is located at the very top of the stack at the time of the CALL 
instruction, so it has offset 0 upon entry. However, after the prologue, the offset of 
myParm2 is +32.	

The SourceName, LineNumber, and TypeCode work as described earlier.	

The .local pseudo-op may also be included by the compiler for any temporary 
variables the compiler creates which have no human-created SourceName. A empty 
SourceName is legal but is discouraged. A simple name of “_temp” is acceptable, but 
names like “_temp_23” are better.	

There is no requirement that SourceNames be unique, even within a single function.	
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WARNING:  The compiler is free to move globals, locals, and parameters into 
registers. The compiler will take great effort to keep them in registers as much as 
possible.	

As such, the values stored in memory will often be out of date and memory may 
contain obsolete values.	

The programmer should never forget this when using the debugger.	

At the entry to a function or method, the parameters will always be where they are 
expected to be. Thus, the .local and .regparm info will be correct and an attempt to 
see their values at the beginning of a function or method will display their correct 
values. However, once the function or method gets underway, the current values may 
be placed in registers in ways that are likely to confuse a human. Since the debugger 
doesn’t know about how the compiler has choosen to use the registers, the debugger 
may printout incorrect or out-of-date values.	

Likewise, the compiler may keep a global variable in a register, instead of writing it 
out to memory immediately. [ In the case of “shared” variables, the compiler is 
forced to write out the values as soon as possible whenever they change and to read 
from memory whenever the value is needed. ]	

But for most global variables, the compiler will defer writing the values to memory 
and may use register copies to avoid memory reads.	

The result is that, by examining variables with the debugger, it is easily possible that 
the programmer will see obsolete values. The natural response is to ask why the 
variable is incorrect and to focus mental effort debugging something which is, in 
fact, not an error at all.	

Even when the value in memory and the value in a register happen to be the same, 
the compiler may make all accesses and updates to the register copy, not to memory. 
Thus, if the programmer uses the debugger to make a change to a variable’s value as 
stored in memory (where the debugger thinks it is), the actual code may ignore this 
value and continue to use the value cached in a register.	

So again, the programmer should be very aware that examining or reading a 
variable’s value (other than a “shared” global or a parameter at the very beginning of  
a function or method entry) is fraught with danger. 	
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The .stmt Pseudo-op	

Consider a KPL assignment:	

x = y + 123

The purpose of the .stmt pseudo-op is to associate debugging information with the 
range of instructions that implements a single source level statement.	

The general form is:	

.stmt StatementType, line=LineNumber

There are a number of Statement Types.	

Each .stmt pseudo-op must be placed directly before the sequence of instructions to 
which it applies. The range of instructions continues until the next .stmt 
or .endfunction pseudo-op. The .stmt pseudo-op may only occur between 
a .function and an .endfunction pseudo-op.	

.function …
…
.stmt assign,line=63
loadd r1,16(sp)
addi r1,r1,123
stored 32(sp),r1

.stmt if,line=64
…
.endfunction
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Here is the list of statement types.	

0 < .comment > COMMENT
1 assign ASSIGNMENT statement
2 if IF statement
3 then THEN statement
4 else ELSE statement
5 call FUNCTION CALL	
6 send SEND statement
7 while_expr WHILE LOOP (expr evaluation)	
8 while_body WHILE LOOP (body statements)	
9 do_body DO UNTIL (body statements)	
10 do_expr DO UNTIL (expr evaluation)	
11 break BREAK statement	
12 continue CONTINUE statement	
13 return RETURN statement	
14 for_init FOR statement (before initialization)
15 for_body FOR (body statements)	

	 16 for_incr	 FOR (before increment)
17 for_expr	 FOR (before test)
18 switch SWITCH statement

	 19 case	 CASE
20 default	 DEFAULT
21 try TRY statement
22 throw THROW statement
23 catch CATCH clause
24 free FREE statement
25 debug DEBUG statement
26 init_arr INITIALIZE ARRAY statement
27 init_obj INITIALIZE OBJECT statement
28 set_arr_sz SET ARRAY SIZE statement
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The .comment Pseudo-op	

The .comment pseudo-op is used to associate an arbitrary comment string with a 
memory address. Here is the general form:	

.comment "CommentString"

Here is an example usage:	

.comment "Reg 4 contains X"

This string is associated with the memory location. When that memory location is 
examined using the debugger, the debugger may display that information.	

The .comment pseudo-op is designed to help break apart complex statements. 
The .comment instruction can be inserted by the compiler to explain what it is 
doing or to document something not covered by the .stmt pseudo-ops. A prime 
example would be to document a function or method invocation within a larger 
expression.	

Example  Consider this KPL source code, which contains a function call (foo) and a 
message send (bar) within an expression.	

…
i = foo (i) + x.bar (k)
if (a >= b)
…

The compiler might produce the following assembly code. We assume the compiler 
is smart enough to insert a .stmt pseudo-op before the code for each statement and 
a .comment before each function or method invocation. ( I’ve highlighted in bold the 
debugging pseudo-ops inserted by the compiler. I’ve also added comments to 
explain what the code is doing, although it is unlikely the compiler will provide such 
useful comments.)	
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…
.stmt "AS",line=87
loadd r1,16(sp) # argument i
.comment "call foo"
call P_Foo_34 # perform call
stored 32(sp),r1 # save in temp
loadd r1,40(sp) # receiver x
loadd r2,48(sp) # argument k
.comment "send message bar"
loadd t,0(r1) # perform send
jalr lr,88(t) # .
loadd r2,32(sp) # retrieve temp
add r1,r1,r2 # perform addition
stored 16(sp),r1 # save in i
.stmt "IF",line=88
blt r3,r4,_Label_97 # if (a >= b) ...
…

Next, assume the program is executed and an error has occurred at runtime. Assume 
the debugger tool is activated and the programmer wishes to use the “disassemble” 
command to display the contents of memory.	

Here is how the debugger might display memory contents. Using the debugging 
information, the debugger is able to display the debugging information (highlighted 
in bold). This additional information makes a straight memory dump 
comprehensible.	

...
ASSIGNMENT (line 87)
00000AB00: 1E0010F1 load.d r1,16(sp) # offset = 0x10

call foo
00000AB04: 190013CE call P_Foo_34 # PC + 0x13C
00000AB08: 220021F0 store.d 32(sp),r1 # offset = 0x20
00000AB0C: 1E0028F1 load.d r1,40(sp) # offset = 0x28
00000AB10: 1E0030F2 load.d r2,48(sp) # offset = 0x30

send message bar
00000AB14: 1E000018 load.d t,0(r1) # offset = 0x0
00000AB18: 1A00588E jalr lr,88(t) # offset = 0x58
00000AB1C: 1E0020F2 load.d r2,32(sp) # offset = 0x20
00000AB20: 00010211 add r1,r1,r2
00000AB24: 220011F0 store.d 16(sp),r1 # offset = 0x10

IF (line 88)
00000AB28: 12001434 b.lt r3,r4,0x14 # if (r3<r4) goto _Label_97
...
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Perhaps the compiler is clever and is able to generate a more descriptive string for 
the .comment. For example, the compiler might insert something like:	

.comment "call foo (i)"

.comment "send message x.bar(k)"

Of course the more numerous the .comments are and the more descriptive the 
strings are, the more space will be consumed in the object and executable files to 
contain this debugging information. Therefore, the compiler may elect to insert 
minimal debugging information. [ Note that the assembler identifies identical strings 
and will represent each string only once. So if the same string is used repeatedly in 
many .comment pseudo-ops, no additional space will be required for subsequent 
uses of the same string. ]	
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Quick Summary	

• Function calling conventions are described.	
• Support for debugging is discussed.	
• Representation for objects and classes is described.	
• Method dispatching is described.	
• Examples are given showing how code can be compiled into assembly.	
	 — Some common compilation patterns are given.	
	 — The fit of the Blitz-64 instruction set to the KPL language is discussed.	

Function Calling Conventions	

Whenever some code contains a “call statement” to invoke a function, we refer to 
that code as the “caller” or “calling code”. The function being invoked is referred to 
as the “called” function or the “callee”.	

The caller and called functions are often compiled separately and the compiler has 
no knowledge of one function when compiling the other. Therefore, a set of 
“function calling conventions” is adopted and used for all functions. Assuming the 
code generated for the caller and for the called functions both respect these 
conventions, the function invocation and return will work properly.	

The compiler will follow these conventions, but assembly language programmers 
are free to do anything they want. For hand-coded assembly functions that call 
compiler-generated functions, or for hand-coded assembly functions that are meant 
to be called by compiler-generated code, it is mandatory that the calling conventions 
are followed. For large assembly programs, the programmers would be well-advised 
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to follow the standard calling conventions. ( Actually, nobody writes large assembly 
language programs any more, so this is a moot point. )	

For convenience, we repeat the register usage conventions:	

	 	 Alternate	
	 	     Name    	 Function                  	
	 r0	 	 Zero	
	 r1	 	 Argument 1 / Return Value	
	 r2	 	 Argument 2	
	 r3	 	 Argument 3	
	 r4	 	 Argument 4	
	 r5	 	 Argument 5	
	 r6	 	 Argument 6	
	 r7	 	 Argument 7	
	 r8	 t	 Temp register, used by assembler/linker	
	 r9	 s0	 Work reg (caller-saved)	
	 r10	 s1	 Work reg (caller-saved)	
	 r11	 s2	 Work reg (caller-saved)	
	 r12	 tp	 Thread data pointer	
	 r13	 gp	 Global data pointer	
	 r14	 lr	 Link register	
	 r15	 sp	 Stack pointer	

Consider a function named “foo”; we use the CALL and RET instructions to invoke 
the function. For example:	

Source file of caller:	

…
call foo
.import foo
…

Source file of the called function:	

foo:
.export foo

	 … Code for foo …	
ret
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If the caller and the called code are in the same source file, then we dispense with 
the .import pseudo-op instruction.	

Next, we give the basic function calling register conventions including the rules 
for passing arguments.	

Let’s define an argument to be “small” if its size is 8 bytes or smaller. This means all 
arguments with a basic type—i.e., int, word, halfword, byte, bool, double, and 
pointer—are small. Some objects, structs, and unions may also be small. Every 
object requires at least an 8 byte header (the dispatch table pointer) which means 
the object would have no fields in order to be “small”, but that might happen. Arrays 
are never “small” since they have a header of 8 bytes plus at least 1 element.	

•	The first 7 “small” arguments will be passed in registers r1, … r7.	

•	A small argument that is passed in a register will be sign-extended whenever it 
is of less than 64 bits. For example, an argument of type “byte” will occupy the 
entire register.	

•	If there are fewer than 7 small arguments, they will be passed in registers r1 … 
rN. For example, if arguments 1, 2, 5, and 9 are the only small arguments, they 
will be passed in registers r1, r2, r3, and r4. The remaining registers (r5, r6, 
and r7) will contain garbage, by which we mean they contain the remnants of 
previous computations by the caller.	

•	All remaining arguments are passed from caller to callee by being placed in 
memory on the runtime stack, as described later.	

• If there is a return value and it is “small”, it will be returned in register r1. If 
there is a return value but it is not small, it will be returned on the runtime 
stack.	

• Upon return, registers r2 … r7 will contain garbage. Register r1 will also 
contain garbage, unless the function returns a small value, in which case r1 is 
used to return that value.	

• Register r8 (i.e., register t) is the “temporary work register”. Upon invocation 
it  will contain garbage and the callee can make no assumptions about its value. 
The register may be used by the callee, as needed. Upon return, the register is 
garbage and the caller can make no assumptions about its value.	
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• Registers r9, r10, r11 (i.e., s0, s1, s2) are known as the “work registers”. Upon 
entry, they will contain garbage and the callee is free to use them as needed.	

• Registers r1 though r11 (i.e., r1…r7, t, s0…s2) are said to be “caller-saved”. 
The caller must not assume their values will be preserved across the call. If they 
contain important information to the caller, then that function is responsible for 
saving their contents before the call and restoring them after the called function 
returns. Thus, the callee is free to use these registers without saving their 
contents first.	

• Register r12 (i.e., tp) is the “thread pointer”. Register tp is typically fixed and 
unchanging throughout the execution of a program. It is used to point to a 
region of memory that is specific to an individual thread. In this way, a function 
can determine in which thread it is executing and can access any per-thread 
data. This register is said to “callee saved” in the sense that it must not be 
modified by the callee. If, for some strange reason, the callee changes its value, it 
must first save and then restore that value before returning.	

• Register r13 (i.e., gp) is the “global pointer”. This register typically contains a 
fixed value which is used to making accessing static data (i.e., global variables) 
easier. This register typically remains unchanged throughout the entire 
program execution. This register is said to be “callee saved” in the sense that it 
must not be modified by the callee. If, for some strange reason, the callee 
changes its value, it must first save and then restore that value before returning.	

• Register r14 (i.e., lr) is the “link register” and is used directly by the CALL and 
RET instructions. This register is loaded with the return address by the CALL 
instruction so, upon invocation of a function, this register contains the return 
address. The RET instruction depends on this register containing that return 
address. If the called function intends to call other functions, it must first save 
the contents of register lr and then restore lr before executing its own RET 
instruction.	

• Register r15 (i.e., sp) is the “stack pointer” register. It is callee-saved and must 
not be modified. More precisely, anything pushed onto the runtime stack must 
be popped before return, so there must be no net change to this register.	

By “the register will contain garbage”, we mean that it will contain some 
undetermined, unspecified value. Upon invocation, the caller may have left the 
results of some previous computation in the register. However, the caller will no 
longer need that value, so the callee need not save that value and is free to use the 
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register. Upon return, the caller must assume that “garbage” registers contain 
undefined values. The caller cannot assume that these registers contain whatever 
the caller put in them before the function invocation.	

When arguments are passed in registers, the register will contain these values:	

	 Arg Type	 Register Contains…	
	 int	 64 bit signed integer	
	 pointer	 36 bit address; the upper 28 bits are undefined	
	 double	 64 bit floating point value	
	 word	 32 bit signed integer; upper 32 bits will be sign extension	
	 halfword	 16 bit signed integer; upper 48 bits will be sign extension	
	 byte	 8 bit signed integer; upper 56 bits will be sign extension	
	 bool	 64 bits (0=FALSE, 1=TRUE)	
	 object	 The object, which must be exactly 64 bits in size	
	 struct/union	 The struct/union, which must be ≤ 64 bits in size	

When a value smaller than 64 bits is passed in a register, the value will be sign-
extended.	

Whenever the processor uses the contents of a register as an address, the upper 28 
bits are ignored. We never care about the upper 28 bits of an address. Generally, the 
upper bits of a pointer are zeros.	

For other values, it is critical that the upper bits are sign-extended. Consider how a 
byte value of -1 might be passed in a register:	

0xFFFF_FFFF_FFFF_FFFF Correct
0x7FFF_FFFF_FFFF_FFFF Incorrect

Imagine the code in the called function wishes to add +1 to the value. If the register 
contains the sign-extended value, then it works correctly, yielding 0. If the register 
contains the incorrect value, an Arithmetic Exception is erroneously generated.	

The following is the meaning of the 8 bits stored in a boolean variable are:	

	 0 = FALSE	
	 anything else = TRUE	

Typically, the value 1 is used for TRUE. (The compiler always makes the comparison 
against 0, and never against 1. However, when comparing two bool values, the 
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compiler is allowed to use a single EQ test. This guarantees a correct result as long 
as TRUE is always represented with 1 and other non-zero values are avoided.)	

Commentary  Concerning the design choices for register calling conventions, there 
are several questions:	

•	 How many registers shall be devoted to argument passing?	
•	 Shall some registers be declared to be “callee-saved” and how many?	
•	 Shall some registers be “caller-saved work registers” and how many?	

We decided to devote a lot of registers to argument passing.	

Note that almost all functions have 7 or fewer arguments. Passing arguments in 
registers is very important for efficiency and 7 covers almost all cases. Also note that 
any register set aside for arguments that is not needed for that purpose, 
automatically becomes a “work register” for the callee function. So in many cases, 7 
registers will suffice for all arguments and a few work registers. Notice that the 
argument numbers 1, 2, 3, … coincide with the register numbers r1, r2, r3, …	

The thinking here is that every argument has to be “marshaled” (i.e., the argument 
expression must be evaluated and the result placed somewhere where the callee can 
find it). In order to perform this marshaling, each argument must at least be moved 
into a register in the caller’s code. Moving the argument to memory is an additional 
step which may or may not be necessary. The Blitz-64 strategy is to try to avoid 
these STORE instructions.	

The caller can’t know which arguments are best kept in memory; only the callee can. 
So the idea is to delay saving the arguments to memory. This allows the callee to 
save whichever arguments to memory it chooses. Leaving all arguments in registers 
gives the maximal freedom to the callee to determine which arguments to keep in 
registers and which to move into memory.	

For functions with fewer than 7 arguments, there will naturally be left-over registers 
which can be used as “work” registers by the callee. For functions with 7 or more 
arguments, all registers will be in use upon function entry. Presumably some 
arguments will be needed immediately, but the caller cannot know which. If the 
callee needs additional work registers beyond those otherwise available, it will be 
required “spill” some registers to memory. But only the callee can choose the best 
registers to spill. With up to 7 arguments in registers, we are effectively giving the 
decision making to the callee, where it can be made more effectively.	
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The t register is a very local temporary work register, frequently used in synthetic 
instructions, so its use is fixed.	

The registers tp, gp, lr, and sp have dedicated uses.	

This leaves 3 registers: s0, s1, and s2.	

Initially, we defined s0, s1, and s2 to be callee-saved, but reversed this decision and 
made them caller-saved.	

Either choice has pitfalls: In one case, the caller must save them every time a 
function call is made, even though many callees may ignore them, which is a waste. 
In the other case, the callee must save them if they will be needed and restore them, 
even if they don’t contain any valid caller data; again a waste.	

It probably makes sense to have a few callee-saved registers. The compiler can look 
at each function “f” and make decisions about which registers to use. If “f" contains 
many functions calls, it makes sense to keep data in callee-saved registers, with the 
hope that the callees will be able to avoid using these registers. If there are few 
function calls in “f”, then it makes better sense to keep data in caller-saved registers, 
since this allows “f” to avoiding saving the registers, with the hope that “f”s caller 
does not use the register.	

Note that if a function “f” is small-ish, then it often won’t need extra registers. 
Furthermore, if “f” is small, it is also more likely to be in-lined, in which case the 
issue is moot. On the other hand, if “f” is large-ish, then it is likely “f” will need the 
extra registers. And since “f” is large, it is likely its execution will require a lot of 
time. So it makes sense for “f”s caller to save the registers, if necessary, relieving “f” 
of the need to spill registers to memory.	

We chose to make s0, s1, and s2 caller-saved but not contain arguments because 
there are few functions requiring more than 7 arguments. In those few cases where 
there are, we still need a couple of work registers available for computation, or else 
we’ll have to immediately spill the arguments to memory, which defeats putting 
them in registers in the first place.	

This is all pretty sketchy reasoning and this may be an open research question 
deserving serious experimentation. Perhaps Blitz-64 can be used to try variations of 
the calling conventions, to try to locate the optimum balance between caller-saved 
and callee-saved registers. It is unclear how much performance potential awaits 
discovery.	
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The Runtime Stack	

A runtime stack is maintained and the sp register points to the “top” of this stack.	

The stack grows downward, from high memory addresses towards location 0.	

The “top” of the stack is thus “below” the items deeper in the stack, in terms of 
memory addresses.	

The sp register is decreased in value for a “push” operation and increased in value 
for a “pop” operation.	

The sp register points to the first byte of the item at the top of the stack. The 
remaining bytes of the top item can be accessed with positive offsets from register 
sp. Items below the stack top (that is, deeper in the stack) are also accessible with 
positive offsets.	

When referring to stacks, we use the words “top”, “above” and “upper” to mean those 
items which are closest to the stack top. Since the runtime stack grows downward, 
these terms can be confusing since those items actually have “smaller” addresses 
and are located “lower” in memory. [ This can be confusing: When item x is said to be 
“above” item y, it can mean item x is closer to the stack top and thus has a smaller 
address, or it can mean that item x has a larger address and is thus farther from the 
stack top. The best approach is to be careful to say “larger or smaller addresses”, or 
“closer to the stack top” and “deeper in the stack”. ]	

The sp register will always be an even multiple of 8. In other words, whenever an 
item is pushed onto the stack, that item will be rounded up in size to an integral 
number of doublewords.	

Upon entry to a function, the stack top register sp will always point to the top item 
in the stack, or more precisely, to the first byte of the top item. After returning from 
the function, there will be no net changed to the stack. In particular, the sp register 
will be unchanged at the time of the RET instruction. Furthermore, there will be no 
changes to items already in the stack (with a couple of exceptions discussed later). 
In other words, the bytes with addresses equal and greater than sp will be 
unchanged by the invocation and return of a function.	
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However, there is no such guarantee about bytes above the top of the stack, i.e., the 
bytes with addresses lower than the value in sp. The called function is free to push 
items onto the stack (thereby overwriting whatever was in those bytes), as long as 
every item pushed is also popped before return.	

While we said that register sp points to the first byte of the item at the top of the 
stack upon function entry and function exit, there is no constraint that bytes with 
addresses below sp cannot be used during the function.	

A “leaf function” is a function that does not invoke any other functions. Many 
functions are not leaf functions because they may call other functions. In other 
words, a leaf function does not contain any CALL instructions, and a function that 
contains CALL instructions is not a leaf function.	

Since a leaf function will not call any other functions, it will not need to use register 
lr. Thus, the leaf function can leave its own return address in lr. There is no need for 
the leaf function to save its return address. On the other hand, a non-leaf function 
must save its own return address before calling other functions. A non-leaf function 
must save the value of lr and must restore it before returning. Thus, a non-leaf 
function will require more instructions on entry and on return than a leaf function.	

Functions are free to make use of memory locations above the stack top (i.e., at 
addresses that are less than register sp). This is important for leaf functions.	

Since a leaf function will not be calling other functions, it does not need to worry 
about another function pushing data onto the stack. Therefore, the leaf function is 
free to use memory “above” the top of the stack (i.e., at memory addresses less than 
the sp register) to store its temporary and local variables.	

A leaf function does not need to decrement sp upon function entry or increment sp 
upon function exit. It can simply use negative offsets from sp for the storage of its 
data. This saves two additional instructions upon the entry and exit of the leaf 
function.	

However, it is important to note that the OS kernel can not rely on the sp register to 
delimit the runtime stack. The OS kernel may not make the assumption that only 
bytes with addresses greater than or equal to the sp register contain valid data. 
Because leaf functions are using bytes “above” the stack top, this assumption is 
incorrect.	
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Obviously, the OS kernel or any additional interrupting code cannot push 
information onto the stack using the sp register and expect a return to the 
interrupted code to be possible. Since the interrupted code could have been a leaf 
function, such an interrupting process that uses bytes beyond the stack top may 
possibly alter or overwrite bytes that were in use by the interrupted code.	
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Argument Locations and the Parameter Block	

As mentioned previously, the first 7 arguments of basic types are passed in registers 
and all remaining arguments are passed in memory. Next, we describe this in detail.	

The remaining argument values are passed on the runtime stack and will be at the 
top of the stack upon function entry. The following diagram shows the stack and sp 
register upon function entry, just before the first instruction is executed.	
The caller will allocate space for all arguments in the parameter block. The called 
function will rely on the space being allocated exactly as described here.	

The parameter block will include space for both arguments that are passed in 
registers and for arguments that must be passed on the stack. For arguments that 
are not passed in registers, the values will be placed in the parameter block by the 
caller.	

For arguments that are passed in registers, space will also be allocated in the 
parameter block. The space will be present, but will contain no useful data. The 
called function is free to use that space as a place to store the argument values if it 
wishes.	
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If there is a returned value of 8 bytes or smaller, it will be returned in register r1. If 
larger than 8 bytes, the function will place it at offset 0 in the parameter block.  In 2

any case, the caller must assume that all argument values stored in the parameter 
block before the call are lost / overwritten / trashed by the called function.	

( Note that allocating extra uninitialized bytes in the parameter block has a zero 
performance cost. The caller is not a leaf function, so it must allocate a stack frame 
regardless. Adding several bytes to the size of the stack frame only changes the value 
by which sp must be decremented when the stack frame is created, and incremented 
when the function returns. Since the bytes are uninitialized, no additional 
instructions are required. )	

The parameter block will occur at the top of the stack and will contain space for each 
argument. The arguments will be placed in the order in which they appear in the 
source code. Padding bytes will be inserted, as required to meet the alignment 
requirements for each argument.	

To illustrate, here is a function prototype:	

function foo (
i1, i2:   int,
p3, p4:   ptr to …,
c5:       MyClass,
b6, b7:   bool,
a8:       MyArray,
i9, i10:  int,
c11:      MyClass,
h12:      halfword,
w13,w14:  word,
h15:      halfword,
w16:      word,
d17:      double,
b18:      bool,
b19, b20: byte,
h21:      halfword )

The layout of the parameter block is shown next. 	3

 In the event that the returned value is larger than all argument values combined, the size of the 2

parameter block will be increased as necessary to accommodate the returned value.

 We assume that objects of MyClass are 16 bytes in size and arrays of type MyArray require 80 3

bytes.
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The first 7 arguments that are 8 bytes or shorter will be transmitted in registers, as 
shown. All other arguments will be placed by the caller on the stack. Upon entry to 
the called function, the arguments will be found at the indicated offsets from the 
stack top, sp.	

      Offset	 Size	
0 r1 8 i1: int
8 r2 8 i2: int
16 r3 8 p3: ptr to …
24 r4 8 p4: ptr to …
32 16 c5: MyClass
48 r5 1       b6: bool
49 r6 1       b7: bool
50 6 ...padding...
56 80 a8: MyArray
136 r7 8       i9: int
144 8 i10: int
152 16 c11: MyClass
168 2 h12: halfword
170 2 ...padding...
172 4 w13: word
176 4 w14: word
180 2 h15: halfword
182 2 ...padding...
184 4 w16: word
188 4 ...padding...
192 8 d17: double
200 1 b18: bool
201 1 b19: byte
202 1 b20: byte
203 1 ...padding...
204 2 h21: halfword
206 2 ...padding...

The total size of this parameter block is 208 bytes; the parameter block will always 
be a multiple of 8 bytes in size.	

The called function will probably not be a leaf function, so it will itself need its own 
stack frame. Upon entry, the called function will begin by pushing a new frame by 
decrementing sp by some amount. This will, of course, alter the offsets it must use to 
access the parameter block.	

For example, if function foo needs a stack frame of (say) 3000 bytes, then it will 
subtract 3000 from sp within its entry prologue. Then, in order to access an 
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argument such as “w16” at offset 184 in the parameter block, the called function will 
need to use offset 3184 from sp.	

Debugging Support	

Bugs occur and programs must be debugged. A program called a “debugger” is used 
to assist the programmer in finding bugs.	

In Blitz, the debugger will be invoked immediately as a result of an error occurring. 
At the moment the debugger becomes active, the program is frozen. Its virtual 
memory is still intact, along with other state information such as the values of the 
registers.	

In this section, we will discuss how the code generated by the compiler interacts 
with the debugger.	

The debugger is itself a program, separate from the program being debugged. There 
are several possible organizations:	

(1)	The debugger will is integrated with the target program and inhabits the 
same virtual address space as the program being debugged.	

(2)	The debugger is integrated within the kernel and is a part of the kernel.	

(3)	The debugger is a separate user-level process which makes use of special 
features of the kernel to access the target program’s memory.	

(4)	The code is being emulated and the debugger is part of the emulator.	

As of this writing, the last option is fully implemented and is used to debug 
programs written in KPL and assembly language.	

In KPL, all errors result in “throwing” an error. The program itself may catch the 
error, in which case the program may take appropriate actions. But if not caught, the 
default action is to invoke debugging.	

The first task of the debugger is to determine where execution was when the error 
occurred. For many types of error, there will be additional information about the 
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error. For example, if an array index is out of range, we want to capture and make the 
(incorrect) index value available.	

In Blitz, errors are detected in either of two ways. First, some types of error will 
cause a runtime exception. Second, the compiler will insert code that will explicitly 
test for other types of errors.	

In the first case, errors caught by runtime exceptions are checked by the hardware 
and involve no overhead, since there are no additional instructions. As part of the 
exception processing, registers (including the PC) will be saved and an error 
handling function will be invoked.	

In the second case, errors caught with explicit tests will cause a CALL to be made to 
error handling code. (Typically, the code generated by the compiler will test for an 
error condition and will branch around a CALL instruction.) The CALL instruction 
will be executed only if the error happens and, as normal for any CALL, the return 
address will be saved.	

Regardless of how the error handler was invoked, the value of the PC register at the 
time of the error will be captured and used to locate where in the code the error 
arose. Also, any other pertinent information (such as an invalid array index) will be 
captured and saved by the error handler function.	

Unfortunately, the value of PC is a memory address, i.e., a binary number not likely 
to be meaningful to a human. To help the human, this address must be translated 
into meaningful information, such as a line number within some source code file.	

Also, the programmer may wish to examine the contents of variables and 
parameters. These will be stored at various offsets from the stack top. To assist the 
programmer, the debugger will need to know which function was executing and 
what offsets were used for various parameters and local variables.	

In other words, the debugger will need some information about the program being 
debugged. Some debugging information is specified with pseudo-ops such 
as .function, .local, and .stmt.	

But where is this information to be stored?	

Information about the program (which will be used by the debugger) is stored in 
two places:	
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• Within the executable file	
• Within memory, alongside of the program code and data	

Blitz stores most of the debugging information in the executable file, but stores some 
information in memory with the target program’s instructions.	

The debugging info derived from pseudo-ops (such as .function, .local, and .stmt) is 
stored in the executable file. The KPL compiler automatically generates the 
debugging pseudo-ops so all programs carry the necessary information in their 
executable files.	

There is also a concern with hand-coded assembly language routines. However, it is 
not a significant burden to include debugging pseudo-ops in hand-coded assembly 
functions.	

The KPL compiler will place information about types and objects directly in memory 
in the form of dispatch tables and class descriptors. This is done because this 
information may be needed at runtime for other (non-error) operations, such as the 
isKindOf and isInstanceOf functions.	

Generally speaking, storing the debugging information in the executable file is 
preferred over placing information in the program itself. Placing the information in 
memory at runtime increases the program size and increases the time to load the 
program, as well as enlarging the program’s memory footprint.	

However, placing the debugging information in the executable file requires 
participation by the assembler and linker. Since the debugging information contains 
information about the placement of code and variables in memory, the assembler 
and linker are required to carry this information through from the .s file and add it 
to the executable file. Also, at the time of an error, the debugger must read in the 
executable file, parse it, and build an internal representation.	

We consider it mandatory that the debugger must always be invoked for any 
program that has an error. This means the hooks for error handling must be present 
in every program. The programmer must never be required to recompile the 
program with special options or rerun a faulting program.	

In Blitz, the debugger is always invoked on error and begins by accessing the 
original executable file from which the program was loaded to obtain the necessary 
debugging information.	
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One issue concerns the question of locating the executable file from which the 
program was loaded.	

( It is possible that the executable file will get modified or deleted between the time 
the program is loaded and the time the debugger is invoked. We place the burden of 
guarding against this on the programmer who is using the debugger. )	4

The key question the debugger must answer is:	

	 Which source statement was executing at the time of the error?	

The debugger must determine which source level statement was executing and 
within which function.	

To accomplish this, the debugger builds a reverse mapping from PC values to source 
statements. From the PC value captured by the error handler, the debugger can 
search and determine the source statement and the identity of the function that 
contains that statement.	

Experience has shown that naming the error and simply identifying the source 
statement line number is incredibly useful in debugging. This cannot be overstated.	

This reverse mapping will fail if a bug causes a program to make a jump to a 
“random” location. In that case, the PC value is garbage.	

But how likely is such a random jump? And how can it occur in KPL code?	

We assume that user-level code is always kept in read-only pages so it can never be 
overwritten. Jump tables (e.g., dispatch tables or switch jump tables) are also kept in 
read-only pages. Therefore, these are not a source of random jumps.	

Consider a program working with values of type “ptr to function”. While a mistake 
may cause incorrect output, the KPL type checking system will prevent the program 

  If the debugging information had been stored in memory alongside the code, this would not be a 4

problem; the debugging information is already there when needed.	

One approach is to disallow the debugger to be used on a program that was loaded in the past. In 
other words, to debug a program, the programmer must restart the program from within the 
debugger. But this has the shortcoming of making it difficult to debug transient errors. The bug 
may not manifest itself upon restarting the program. We must be able to begin debugging a failed 
program immediately, without having to restart it.
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from taking a random jump which could confuse the debugger. However, if the 
programmer uses an “unsafe” operation on a function pointer, this could cause a 
program to take a random jump. 	5

This leaves return addresses stored in stack frames. Of course a bug can corrupt the 
stack and result in a RET instruction jumping to a random location. 	6

Random jumps are, in fact, almost non existent.	

In practice, the Blitz debugger reports the location of errors very reliably.	

Function Prologue and Epilogue	

Often a function needs a stack frame to be pushed on the stack, in which to store 
local variables. The sp register is used to point to the current top of the stack.	

In some processors, a second register is devoted to pointing to and accessing the 
stack frame. This register might be called the “frame pointer” (or “fp” register). The 
Blitz-64 architecture is designed so a second register is not needed. In Blitz, there is 
no “fp” register. Instead, the sp register is used to access the stack frame, as we 
describe next.	

The sequence of instructions occurring at the beginning of a function is called the 
function prologue. The sequence of instructions occurring at the end of a function 
(executed directly before returning) is called the function epilogue.	

The prologue creates and pushes a stack frame on to the stack when the function 
begins execution. The epilogue pops the stack frame off the stack before returning.	

The same approach can be used for methods, as well as functions, so these 
sequences are sometimes called the method prologue and method epilogue. In 
this discussion, we’ll just talk about functions, although the same works for 
methods. Sometimes, the terms entry code sequence and exit/return code 
sequence are used.	

 Programs that perform unsafe pointer manipulations on function pointers are extremely rare and 5

weird.

 Let’s not forget that another source of random jumps in is the presence of a compiler error.6
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Of course, the programmer can place a return statement anywhere within a 
function and the function can contain many returns. In the following, we will place 
the function epilogue as if there is only a single return statement at the bottom of the 
function.	

Most likely, the compiler will place a copy of the epilogue sequence at every place 
where a return statement occurs. 	7

Leaf Functions	

A leaf function is defined as a function that does not call other functions. As such, 
the return address — which is in register lr on entry to the function — can remain in 
lr and does not need to be saved on the stack.	

Here is the code that will be used for the entry and return in a leaf function.	

# Leaf function
foo:

…
ret

There is zero prologue and epilogue overhead for a leaf function.	

Note there is no need to touch or access memory, as long as all arguments and work 
variables are kept in registers.	

 An alternative is for the compiler to include a single copy of the epilogue statements. The 7

compiler will insert a JUMP to the epilogue sequence wherever a return statement is used. Since 
the epilogue is about 3 statements, inserting a JUMP instruction is generally considered too much 
overhead.
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If the leaf function needs additional storage for locals and temporary variables, it can 
place these on the stack, above the stack top, i.e., using negative offsets from 
register sp.	
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Non-Leaf Functions	

If a function calls other functions, we call it a non-leaf function. 	8

For a non-leaf function, the code must save register lr and adjust the stack top 
pointer to push a new stack frame onto the stack:	

# Non-leaf function
foo:

store.d -8(sp),lr
addi sp,sp,-FRAME_SIZE
…
addi sp,sp,FRAME_SIZE
load.d lr,-8(sp)
ret

In the above code, “FRAME_SIZE” is an integer which gives the size of the frame. The 
frame size and layout will be computed by the compiler. The compiler must compute 
the size needed to store parameters for each of the functions that “foo” invokes (the 
maximum size needed for all functions will become the size of the parameter block). 
The compiler will also determine the amount of storage needed for locals and 
temporaries within foo, plus 8 bytes in which to store the return address.	

 The KPL compiler will often insert error checking tests and, if triggered, the code will execute a 8

CALL to an error handler function. While the source code may not call any functions explicitly, any 
such implicit error-related CALLs will render the function a non-leaf function.
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Here is what a stack frame looks like:	

Within foo, the local and temporary variables will be accessed with positive offsets 
from sp. Access to the arguments to foo will also be made using positive offsets to 
sp. The exact offsets to the arguments can only be determined after the size of foo’s 
frame has been determined.	

The above code sequences will need a slight modification if FRAME_SIZE exceeds 
32,767 since the ADDI instruction has that limit. 	9

Reconstructing the Call Stack	

Note that this organization provides enough information for the debugger. After an 
error occurs, the debugger is given only:	

 For larger frames, the compiler will need to generate an additional instruction for the prologue 9

and an additional instruction for the epilogue. See the commentary in the ISA Reference Manual 
immediately following the description of the UPPER16 instruction for more information.
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PC	 The address at which the error occurred	
sp	 A pointer to the stack top at the time of the error	

From the PC, the debugger will use the reverse mapping (described elsewhere in 
this document) to determine which source statement was executing and, from that, 
which function was currently active. From the function information, the debugger 
can determine the size of the stack frame, which will allow it to locate the slot 
containing the return address. Then, it can compute the stack top on entry to the 
function and the statement from which the function was called.	

In this way, the debugger can work backwards through the stack, showing the entire 
call history.	

Object Representation	

Consider the following class definition:	

	 class MyClass	
	 	 i: int	
	 	 b: bool	
	 	 w: word	
	 	 p: ptr to MyClass	
	 	 h: halfword	
	 endClass	

Every object will be located on a doubleword aligned address and all fields within 
the object will be properly aligned, according to their individual requirements. For 
example, the offset of the word field w will be an even multiple of 4, ensuring that it 
will be word aligned.	

Each object of the class MyClass will have the five fields shown above, along with a 
hidden field, known as the “dispatch table pointer”.	

Every object will contain a dispatch table pointer, which will always be the first field 
in the object, i.e., the pointer will always be at offset 0 of the object. This pointer will 
be a 64-bit field containing the address of a “dispatch table”.	
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Objects described by the above definition will be laid out as:	

	               field             	 type	 offset	 size	
	 <dispatch pointer>	 	 0	 8	
	 i	 int	 8	 8	
	 b	 bool	 16	 1	
	 <padding>	 	 17	 3	
	 w	 word	 20	 4	
	 p	 ptr	 24	 8	
	 h	 halfword	 32	 2	
	 <padding>	 	 34	 6	
	 	 	 40	 size of object	

There will be 0-7 bytes of padding added to force the size of every object up to a 
multiple of 8 bytes.	

If the class is a subclass of another object, then all the fields of the superclass will be 
placed before the fields of the subclass. The size of the superclass will be a multiple 
of 8, which will ensure that the fields of the subclass (which follow) will be properly 
aligned.	

There will only be one dispatch pointer and it will always be at offset 0.	

The compiler will know the offset of every field in an object and these fields will 
always be properly aligned. Thus, the LOADx and STOREx synthetic instructions can 
be used directly to retrieve and update fields.	

For example, assume that register r1 contains a pointer to an object of type MyClass:	

	 To retrieve the “int” field at offset 8:	
loadd …,8(r1)

	 To update the “word” field at offset 20:	
storew 20(r1),…

Note that LOADx and STOREx are synthetic instructions. Any offset can be specified 
in the assembly code, up to the full range of memory. The assembler will generate 
only as many machine instructions as required. For any object under 32,767 bytes in 
size, a single instruction will suffice. Since it is unusual for objects to be this large, in 
most cases a single instruction will be used. However, notice that extremely large 
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objects will be automatically accommodated without additional measures or 
exceptions.	

Method Invocation and Dynamic Dispatching	

For every class definition, the compiler will produce a single dispatch table. The 
dispatch table will begin with a 64 bit field called the “class pointer”. This pointer 
will be followed by a number of 64 bit fields, called “jump slots”. Each jump slot will 
correspond to one message that objects of this class understand. The dispatch table 
will contain a jump slot for each message defined in the class, as well as a jump slot 
for each message defined in superclasses.	

Each jump slot will contain a JUMP instruction. The JUMP instruction is a synthetic 
instruction that will be expanded to either one or two machine instructions. This 
expansion will be done by the linker, after it has determined the exact address of the 
target location.	

Thus, the JUMP will be either 4 or 8 bytes. All jump slots are 8 bytes and, for JUMPs 
that require only 4 bytes, the linker will insert padding bytes.	

The target of the JUMP will be the code for the corresponding method. That is, the 
JUMP will branch to the first instruction of the “entry prologue” sequence.	

A message is very similar to a function. In fact, the code for a message is identical to 
the code for a function, with the exception that there is an additional argument. This 
argument is always the first argument and is a pointer to the receiving object itself.	

Thus, the “self variable” is a pointer to the receiver and will be in register r1 upon 
method entry. The first normal argument to the message will go into r2, with 
remaining arguments in r3 … r7. In other words, arguments are passed to method 
exactly the same way they are passed to functions, with the addition of an additional 
argument (the self pointer) inserted before the other arguments.	

Likewise, the remaining calling conventions and parameter passing rules are 
identical for both functions and methods.	

The only difference is in the caller’s code that invokes the method. When invoking a 
function named “foo”, the caller’s code looks something like this:	
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# Function Invocation
mov r1,… # Evaluate argument 1
mov r2,… # Evaluate argument 2
mov r3,… # Evaluate argument 3
call foo
mov …,r1 # Retrieve returned value

Now let’s consider invoking a method named “meth”.	

For each method, the compiler will determine the offset into the dispatch table. The 
code will jump indirectly through this table. We do this because the compiler must 
perform dynamic dispatching. The compiler cannot know the exact class of the 
object. Thus, the compiler doesn’t know which dispatch table will be used or which 
method implementation will be executed. The compiler only knows the offset into 
the dispatch table where a JUMP to “meth” will be found.	

Let us assume that the offset into the dispatch table for “meth” is some number 
“xxx”. Then the following code sequence will perform message sending.	

# Method Invocation
mov r1,… # Evaluate ptr to receiver
mov r2,… # Evaluate argument 1
mov r3,… # Evaluate argument 2
loadd s0,0(r1)
jalr lr,xxx(s0)
mov …,r1 # Retrieve returned value

The LOADD instruction will move a pointer to the dispatch table into register s0. The 
JALR instruction will save the return address in the linker register lr and jump 
directly to an entry in the dispatch table. This entry will be the jump slot for “meth” 
and will contain a jump to the appropriate code. In other words, this code performs 
a “call” to the jump slot itself. Then, immediately, a jump is made to the first 
instruction of the appropriate method.	

Thus, the overhead for a message send, above what is required for a function call is 
typically only two additional instructions:	
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Function call:	
call/jal

Message send (typical):	
loadd # load ptr to dispatch table
jalr # jump to jump slot
jump/jal # jump to method prologue

[ In comparing a method invocation to a function invocation, we are ignoring the 
additional code to load the pointer to the receiver object. If we are using a method 
instead of a function, then the assumption is that there is some object involved (i.e., 
the receiver object) and this object would have been passed as a normal argument 
had the programmer coded this as a function. In any case, a single instruction will 
often be used to load register r1 regardless of whether it is a function or a method. ]	

A CALL instruction will normally expand to a single JAL instruction, but in some 
cases it may expand into two instructions.	

Recall that the JALR instruction contains a 16-bit immediate field, ranging -32,768 … 
+32,767. The above code sequence for a message send will work as long as the offset 
into the dispatch table doesn’t exceed this number. (In particular, the dispatch table 
cannot contain more than 4,094 jump slots, plus the class pointer.) It is unlikely that 
any class will have (or inherit) this many methods. But if so, the compiler will have 
to insert an additional UPPER16 instruction.	

Normally, the jump slot will contain a single JAL instruction, which can branch up to 
-524,288 … +524,287 bytes relative to the jump slot’s location. The compiler will 
typically place the dispatch table and the methods it references in the same segment, 
so they will end up near each other in memory. So in most cases the jump slot will 
contain only a single instruction, but in some cases it may contain two.	

Thus, the very worst case scenario is that a message send requires four more 
instructions than a function invocation.	

Function call:	
call/jal

Message send:	
loadd s0,0(r1) # load pointer to dispatch table
upper16 t,s0,xxx # call to jump slot
jalr lr,xxx(t) # .
upper20 t,yyy # jump to method prologue
jalr lr,yyy(t) # .
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But keep in mind that the CALL itself might have a long distance target and require 
two instructions.	

Object Initialization	

In KPL, objects must be initialized before being used. The initialization is nothing 
more than initializing the dispatch table pointer. Without a valid dispatch table 
pointer, methods cannot be invoked on the object.	

The KPL compiler will insert a test to make sure the object has been initialized. This 
test is inserted in every code sequence that invokes a method. This test requires an 
additional instruction to test the dispatch table pointer to make sure it is not null.	

For clarity, this test was not shown in the above code examples.	

If the dispatch table pointer is null, error handling will be invoked. In particular, an 
error will be thrown. The error is named ERROR_UninitializedObject. Perhaps the 
program will catch this error, but if not, it will result in the debugger becoming 
active.	

[ Without the explicit test, what would happen? Since the dispatch table pointer is 
missing, register s0 will be loaded with zero. Then, using some offset (xxx), a jump 
will be made. This would result in a jump to absolute address xxx. Assuming this is 
user-mode code running in a virtual address space, this will cause a “Page Illegal 
Address Exception”. Unfortunately, the location of the actual error would be lost. 
Would it be wise to add an option to the KPL compiler to give programmers the 
ability to leave these tests out? This was considered and rejected. ]	

Compilation Examples	

In this section, we give some examples code fragments and suggest how a compiler 
might translate them into assembly language. The higher-level code is expressed in 
KPL, the programming language of Blitz-64, although any similar language (like “C” 
or “C++”) could have been used.	

These examples are intended to show how the Blitz-64 ISA can be used; they are not 
necessarily the way the KPL compiler actually works.	
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For the purposes of this appendix, we define “basic types” as:	

	 int	 64-bit signed integers	
	 word	 32 bit quantities	
	 halfword	 16 bit quantities	
	 byte 	 8 bit quantities	
	 bool	 TRUE / FALSE, stored in a byte	
	 double	 64 bit double-precision floating point	
	 ptr	 Pointer to anything, stored in 64 bit doubleword	

Non-basic types are defined as follows. Their sizes will vary:	

	 arrays	 	
	 structs / records	
	 unions	
	 objects	
	 … anything else …	

Access of Variables	

Global variables (i.e., variables defined outside any function or method) will be 
allocated in  fixed, unchanging locations in memory. This can be done with a single 
pseudo-op.	

	 KPL:	
var
  i: int
  w: word
  h: halfword
  c: byte
  b: bool
  d: double
  p: ptr to …
  a: array [ … ] of …
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	 Assembly translation:	
i: .doubleword 0
w: .word 0
h: .halfword 0
c: .byte 0
b: .byte 0
d: .double 0.0
p: .doubleword 0
a: .skip …

(Global variables are called “static variables” by some people.)	

In KPL, all variables are assumed to be initialized to zero values. The above 
translations work because .skip is guaranteed to fill the space with zeros.	

If the programmer provides an initial value, this value can always be determined by 
the compiler and the translation will cause the global variable to be initialized when 
the program is loaded, before execution begins.	

	 KPL:	
i: int = MAX_SIZE-1

	 Assembly translation:	
i: .doubleword 99

The translation of a simple assignment involving a global variable of basic type will 
involve the use of a register, as in:	

	 KPL:	
i = i + 7

	 Assembly translation:	
loadd r2,i
addi r2,r2,7
stored i,r2

NOTE: The LOADx and STOREx instructions are synthetic instructions. They can be 
used to access any location in memory. In many cases, the synthetic will expand to a 
single machine instruction, but for some harder-to-reach addresses, a second 
instruction will be automatically inserted by the linker. Thus there is no limit 
imposed by the ISA, assembler, or linker on global variable access.	
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Local variables are handled differently. In some cases, the compiler will be smart 
enough to place the variable in a register and avoid all memory references.	

	 KPL:	
function foo (…)

var local: int
…
local = local + 7

	 Assembly translation:	
addi r5,r5,7 # assumes “local” is in r5

In other cases, the local variable will be placed on the runtime stack. (“Stack 
frames” are often called “activation records”.)	

[ Stack frames will be discussed later, but the basic idea is that a stack is maintained 
for the duration of program execution. This is a stack of “frames” and the top of the 
stack is pointed to by register sp (i.e., “r15”). When a function is called, a new stack 
frame is pushed onto the stack and when the function returns, the frame is popped 
off the stack. The sp register will point to the first byte of the stack frame (i.e., the 
byte with the lowest address). All locations within the frame will accessed using 
positive offsets. The “pushing” of a new stack frame is a quick and simple operation, 
requiring only that the sp register be decremented by the frame size. Likewise, 
“popping” is accomplished quickly by simply incrementing sp by the same amount. ]	

The compiler may determine that a local variable cannot be kept in a register. In 
such cases, it will allocate some space within the stack frame for the variable. This 
can be because:	

• The variable is not a basic type.	
• There are not enough registers available.	
• Some code asks for the address of the variable (using the “&” operator in KPL).	
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By “basic type” we mean:	

basic type	 size in bytes	
int	 8	
word	 4	
halfword	 2	
byte	 1	
bool	 1	
double	 8	
ptr to …	 8	

KPL also supports the following types, which are “compound types”:	

array	
object	
struct / record	
union	

As an example, assume that variable local has been placed at offset 16 within the 
frame. Now the compiler will need to issue LOAD and STORE instructions to access 
the variable.	

	 KPL:	
function foo (…)

var local: int
…
local = local + 7

	 Assembly translation:	
loadd r5,16(sp) # assumes “local” is in the frame
addi r5,r5,7
stored 16(sp),r5

NOTE: The LOADx and STOREx instructions are synthetic instructions. They can be 
used to access any offset from sp. In most cases, the synthetic will expand to a single 
machine instruction. Occasionally a stack frame may exceed 32 KiBytes in size and a 
second instruction will be automatically inserted by the linker. Frame sizes above 2 
GiBytes in size are not expected, but will be handled by the linker, which will 
automatically insert a third machine instruction. So there is no limit imposed by the 
ISA, assembler, or linker on frame sizes and offsets.	
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Parameters will be either passed in registers or placed on the stack. Details will be 
discussed later. But the accessing of the parameter variables will use these same 
instructions.	

Arithmetic Computation	

The Blitz-64 ISA and the KPL language have been designed together, to work 
together. The arithmetic and logical operators of KPL correspond exactly in 
semantics to the machine instructions in the ISA.	

	 KPL:	 	 	 Machine Instruction	
i + j add     r1,r2,r3
i - j sub     r1,r2,r3
i * j mul     r1,r2,r3
i / j div     r1,r2,r3
i % j rem     r1,r2,r3
-i neg     r1,r2
i & j and     r1,r2,r3
i | j or      r1,r2,r3
i ^ j xor     r1,r2,r3
!(i) bitnot  r1,r2
!(b) lognot  r1,r2
i << j sll     r1,r2,r3
i >> j srl     r1,r2,r3
i <<< j sla     r1,r2,r3
i >>> j sra     r1,r2,r3
i == j beq     r1,r2,label
i != j bne     r1,r2,label
i < j blt     r1,r2,label
i <= j ble     r1,r2,label
i > j bgt     r1,r2,label
i >= j bge     r1,r2,label
b = (i==j) testeq  r1,r2,r3
b = (i!=j) testne  r1,r2,r3
b = (i<j) testlt  r1,r2,r3
b = (i<=j) testle  r1,r2,r3
b = (i>j) testgt  r1,r2,r3
b = (i>=j) testge  r1,r2,r3
d + e fadd    r1,r2,r3
d - e fsub    r1,r2,r3
d * e fmul    r1,r2,r3
d / e fdiv    r1,r2,r3
-d fneg    r1,r2
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d == e feq     r1,r2,r3
d != e feq     r1,r2,r3
d < e flt     r1,r2,r3
d <= e fle     r1,r2,r3
d > e fgt     r1,r2,r3
d >= e fge     r1,r2,r3

In particular, the error and boundary cases are carefully designed to match exactly. 
For example, for many KPL operators, overflow is required to “throw an error”. [ The 
TRY-THROW-CATCH mechanism in KPL is discussed elsewhere. ]	

The Blitz-64 ISA specifies that the corresponding machine instruction will cause an 
exception. For example, KPL requires integer addition to throw an error in the case 
of overflow; likewise, the Blitz-64 ISA requires the ADD and ADDI instructions to 
signal an Arithmetic Exception when overflow occurs.	

In the course of translating some arithmetic expressions, the compiler will need to 
store temporary results. In the following example, no temporary storage is needed:	

	 KPL:	
i = (i + j - k) * m

	 Assembly translation:	
# Assume i: r1
# Assume j: r2
# Assume k: r3
# Assume m: r4

add r1,r1,r2
sub r1,r1,r3
mul r1,r1,r4

However, in the next example, the result of the addition must be kept in a temporary 
location, until after the subtraction is performed. In many cases, the compiler will be 
able to keep this temporary value in a register. In this example, the compiler has 
chosen to use register t (i.e., r8).	
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	 KPL:	
i = (i + j) * (k - m)

	 Assembly translation:	
# Assume i: r1
# Assume j: r2
# Assume k: r3
# Assume m: r4
# Assume temp: t

add r1,r1,r2
sub t,r3,r4
mul r1,r1,t

The compiler may be able to use a register to store the temporary result, as in the 
previous example. However, if no additional registers are available, the compiler will 
be forced to allocate space in the stack frame and store the temporary result there.	

in the next example, the complier has set aside space in the stack frame at offset 24 
to temporarily store the value of (i+j) until it is needed.	

	 KPL:	
i = (i + j) * ((k - m) / (n + p))

	 Assembly translation:	
# Assume i: r1
# Assume j: r2
# Assume k: r3
# Assume m: r4
# Assume n: r5
# Assume p: r6
# Assume (i+j) is at offset 24 in stack frame

add t,r1,r2 # temp = i + j
     stored 24(sp),t # save temp in frame

sub r1,r3,r4 # r1 = k - m
     add t,r5+r6 # t = n + p

div r1,r1,t # r1 = (k-m) / (n+p)
     loadd t,24(sp) # retrieve temp = i+j
     mul r1,t,r1 # r1 = (i+j) * ((k-m) / (n+p))

In the above example, you will notice that all operations are done in the same order 
specified by the source code. The compiler maintains the same order to ensure that 
the overflow behavior at runtime will be exactly what the programmer expects.	
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For example:	

(a + b) + c

may not overflow while the following will cause an overflow exception:	

(a + c) + b

( This can happen when a and c are very large numbers and b is a very negative 
number. )	

In some cases, the compiler may be able to perform some operations at compile time 
or may be able to re-order the operations with no fear of changing the overflow 
behavior. For example, the following: 	

(a + 123) + 456

will overflow in exactly the cases that the following will overflow:	

a + 579

As long as there is no change in the behavior of the program, including exceptional 
and error behavior, the compiler is free to reorder the operations.	

In most programming languages, wherever the programmer can specify a variable, 
he or she can insert a function call instead:	

i + j + k
i + foo1(…) + foo2(…)

Whenever a function is called, it tends to involve a lot of register usage, forcing the 
compiler to move temporary results into “save” locations in the stack frame.	

The KPL compiler avoids rearranging expressions since it does not always fully 
understand what the code is doing. In the above example, KPL guarantees that foo1 
will be called after the value of i is retrieved and before foo2 is invoked. After all, 
foo1 might have some side-effect that alters the behavior of foo2, or even the value 
of variable i.	
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Flow of Control Examples	

Conditional statements can be translated as shown in this example:	

	 KPL:	

if  ( …condition… )
 …Then statements…

endIf

	 Translation Idea:	

…Evaluate condition…
if true goto Then_label
if false goto Endif_label

Then_label:
 …Then statements…

Endif_label:

If there are “else statements”, the general form is a little more complicated:	

	 KPL:	

if  ( …condition… )	
 …Then statements…

else
 …Else statements…

endIf

	 Translation Idea:	

…Evaluate condition…
if true goto Then_label
if false goto Else_label

Then_label:
 …Then statements…

jump Endif_label
Else_label:

 …Else statements…
Endif_label:
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For example:	

	 KPL:	

	 	 if  (i < j)	
 	 	 	 i = 23	
	 	 else	
	 	 	 i = j + 45	
	 	 endIf	

	 Assembly translation:	

# Assume i: r1
# Assume j: r2

bge r1,r2,_label_67
movi r1,23
jump _label_68

_label_67:
addi r1,r2,45

_label_68:

In order to translate flow-of-control statements, the compiler will often create new 
labels and give them automatically generated names, such as “_label_67”.	

Note the reversal of the condition testing in the above example. The “less than” test 
with a branch to the “THEN” statements is changed to a “greater-than-of-equal” test 
to the “ELSE” statements.	

	 Condition	 Reversed Condition	
== beq != bne
!= bne == bge
< blt >= bge
<= ble > bgt
> bgt <= ble
>= bge < blt
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Notice that , if done literally, the translation of:	

	 	 if  (i < j)  then ...	

according to the general form:	

…Evaluate condition…
if true goto Then_label
if false goto Else_label

Then_label:

is this:	

blt r1,r2,_label_66
bge r1,r2,_label_67

_label_66:

But simple patterns like this can be reduced. In this case, the following is equivalent:	

bge r1,r2,_label_67

With floating point numbers, we have the following instructions which implement 
operations directly.	

	 Condition	
== feq
< flt
<= fle
> fgt
>= fge

Blitz-64 does not contain a FNE instruction. Equal and not-equals are logical 
opposites, so we use FEQ to implement !=. However, with floating point, note that < 
(FLT) and >= (FGE) are not opposites. Likewise, <=(FLE) and > (FGT) are not 
opposites. The difference arises when one argument is not-a-number (NaN). So the 
compiler must be careful not to switch FLT into FGE, or switch FLE into FGT.	

There are a number of other types of conditional expressions and there are a 
number of specialized Blitz-64 instructions that are designed specifically to support 
them. For example, a boolean variable can be tested.	
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	 KPL Example:	
	 	 if  (boolVar) …	

	 Relevant Assembly Instructions:	
btrue Reg1,Label
bfalse Reg1,Label

A pointer can be tested directly and these same instructions can be used for that. 
Note that these instructions compare against zero. Thus, non-null pointers will be 
interpreted as TRUE and null pointers will be interpreted as FALSE.	

	 KPL Example:	
	 	 if  (ptr) …	

	 Relevant Assembly Instructions:	
btrue Reg1,Label
bfalse Reg1,Label

When the source code compares an integer to a constant value, it will typically 
require an additional MOVI instruction, as in:	

	 KPL Example:	
	 	 if  (i == 123) …	

	 Assembly Translation:	
movi t,123
beq Reg1,t,Label

	 or	
bne Reg1,t,Label

However, if the comparison is against zero, there are specialized Blitz-64 
instructions which can be used instead, avoiding the MOVI instruction.	
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	 KPL Examples:	
	 	 if  (i == 0) …	
	 	 if  (i < 0) …	
	 	 …etc…	

	 Relevant Assembly Instructions:	
beqz Reg1,Label
bnez Reg1,Label
bltz Reg1,Label
blez Reg1,Label
bgtz Reg1,Label
bgez Reg1,Label

Sometimes the programmer will evaluate a conditional expression and want the 
result in the form of a boolean value, not in the form of branching. There are 
specialized Blitz-64 instructions which make that sort of operation easy:	

	 KPL Examples:	
	 	 boolVar = (i >= j)	
	 	 return  i<j	

	 Relevant Assembly Instructions:	
testeq RegD,Reg1,Reg2
testne RegD,Reg1,Reg2
testlt RegD,Reg1,Reg2
testle RegD,Reg1,Reg2
testgt RegD,Reg1,Reg2
testge RegD,Reg1,Reg2

According to the semantics of KPL, all subexpressions in a larger expression must be 
evaluated in the order in which they appear in the source. The following are not 
equivalent, and the code must perform the function invocation in the order given.	

	 if (foo(…) && bar(…)) …	
	 if (bar(…) && foo(…)) …	

With the short-circuit AND operator (&&), whenever the first operand is evaluated 
and found to be FALSE, the second operand need not be evaluated, since the result 
will be FALSE regardless. The KPL language specifies that the second operand must 
definitely not be evaluated whenever the first is FALSE.	
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Likewise, with the short-circuit OR operator (||), whenever the first operand is 
evaluated and found to be TRUE, the second operand need not be evaluated, since 
the result will be TRUE regardless. The KPL language specifies that the second 
operand must definitely not be evaluated whenever the first is TRUE.	

With the use of short-circuit operators, the evaluation of conditional expressions 
becomes more complex, as the next example illustrates.	

	 KPL:	

	 	 if  ( (i < j) && (i == k) ) || ( (k < m) && (i == m) )	
 	 	 	 i = 23	
	 	 else	
	 	 	 i = j + 45	
	 	 endIf	

	 Assembly translation:	

# Assume i: r1
# Assume j: r2
# Assume k: r3
# Assume m: r4

bge r1,r2,_label_65
beq r1,r3,_label_66

_label_65:
bge r3,r4,_label_67
bne r1,r4,_label_67

# THEN STMTS...
_label_66:

movi r1,23
jump _label_68

# ELSE STMTS...
_label_67:

addi r1,r2,45

# ENDIF...
_label_68:

In the above example, the full benefit of the short-circuit operators is not 
demonstrated, since the operands are all simple variables that are read-only. But 
keep in mind that the programmer could substitute function invocations for each 

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	149 284



Chapter 8: Assembler Programming Conventions	

operand, thus involving arbitrary computation. Thus, short-circuit behavior is 
required from && and ||.	

The translation of a “while loop” follows this general form:	

	 KPL:	

while  ( …conditional… )	
…statements…

endWhile

	 Translation Idea:	

goto Continue_label
Loop_label:

  …statements…
Continue_label:

  if (…conditional…) goto Loop_label 
Exit_label:

For example:	

	 KPL:	

while  (i < j)	
…BodyStatements…

endWhile

	 Assembly translation:	

goto _label_35  # goto Continue_label
_Label_34:

…BodyStatements…
_Label_35:

blt r1,r2,_label_34 # If i<j  goto Loop_Label
_Label_36:

A loop containing a “break statement” will cause a jump to the “Exit_label”. A loop 
containing a “continue statement” statement will cause a jump to the 
“Continue_label”. For example:	
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	 KPL:	

while  ( …Conditional… )
…	

	 	 	 break
…	

	 	 	 continue
…	

endWhile

	 Translation Idea:	

goto Continue_label
Loop_label:

…
jump Exit_label # Break
…
jump Continue_label # Continue
…

Continue_label:
if (…conditional…) goto Loop_label 

Exit_label:

KPL contains a “do-until” statement, which is similar to a “do-while” or “repeat-
until" statement. The translation follows this general form:	

	 KPL:	

do	
…statements…

until  ( …conditional… )

	 Translation Idea:	

Loop_label:
  …statements…

Continue_label:
  if !(…conditional…) goto Loop_label 

Exit_label:

Here is an example of a “do-until” statement containing a short-circuit operator in 
the condition:	
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	 KPL:	

do	
…BodyStatements…

until  (i < j) && (k == m)

	 Assembly translation:	

_Label_34:
…BodyStatements…

_Label_35:
bge r1,r2,_label_36 # If i>=j  goto Loop_Label
bne r3,r4,_label_34 # If k!=m goto Loop_Label

_Label_36:

The translation of a “for loop” follows this general form:	

	 KPL:	

for ( …InitializationStmts… ; …Conditional… ; …IncrementStatements… )
…	

	 	 	 break	
…	

	 	 	 continue	
…	

	 	 endWhile	

	 Translation Idea:	

…InitializationStmts…
goto Check_label

Loop_label:
  …

jump Exit_label # Break
  …

jump Continue_label # Continue
  …
Continue_label:
  …IncrementStatements…	
Check_Label:
  if (…Conditional…) goto Loop_label 
Exit_label:
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There are several ways to translate a “switch statement”. The simplest translation 
involves performing a series of tests.	

	 KPL:	

switch ( …TestExpr… )
…	

	 	 	 case ( …ExprN… ):	
…StatementsForCaseN…	

…	
	 	 	 default:	

…DefaultStatements…	
	 	 endSwitch	

	 Translation Idea:	

…Evaluate TestExpr…	
	 	 	 	

…Evaluate Expr1…
  if (TestExpr != Expr1) goto Case_1

…Evaluate Expr2…
  if (TestExpr != Expr2) goto Case_2

…Evaluate Expr3
  if (TestExpr != Expr3) goto Case_3

…Evaluate Expr4
  if (TestExpr != Expr4) goto Case_4

jump Case_Default

Case_1:
…StatementsForCase1…	

Case_2:
…StatementsForCase2…	

Case_3:
…StatementsForCase3…	

Case_4:
…StatementsForCase4…	

Case_Default:
…DefaultStatements…	

Exit_label:
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Any “break” statement within any of the code blocks is just translated into a JUMP to 
“Exit_label”. Any code block not ending with a “break” will simply fall through to the 
next code block.	

As you can see, a translation based on this scheme will execute the switch by testing 
each possible value in turn. Of course, whenever there are more than just a couple of 
cases, this will result in poor performance. There are better translation schemes for 
the switch statement. 	

The decision about which translation scheme is best to use can depend on the 
number of cases and other factors. If the various case values all happen to fall with a 
small range of integer values, a superior translation approach is to create a “jump 
table” of  indirect pointers. The code will first compute the value of “TestExpr” and 
then use that value as an index into the jump table. Then the code will branch 
directly to the correct statement block. For switch statements with hundreds of 
cases, this approach to translation is clearly superior. We will not discuss this 
translation technique any further here, although it is the key to making switch 
statements work well.	
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Quick Summary	

•	Object files use the extension “.o”.	
•	Running the assembler tool will produce an object file.	
•	The linker tool takes one or more object files as input.	
•	Running the linker tool will produce an executable file.	
•	Each object file contains the following:	
	 	 — Information about each segment	
	 	 — The data bytes of each segment	
	 	 — Information about each symbol	
	 	 — Information about each patch	
	 	 — Info to support the runtime debugging (optional)	
•	A “patch” is a relocation entry, telling how to modify the bytes in an instruction.	
•	The assembler creates a patch entry for every instruction it cannot complete.	
•	Each synthetic instruction will result in a single patch.	
	 	 — The assembler will fully translate some synthetic instructions,	
	 	 	 in which case no patch is necessary.	
•	The linker has more information available to it than the assembler.	
•	The linker will first place the segments in memory.	
•	Once placed, the value of every symbol will become known.	
•	The linker will process each patch, updating the bytes in memory.	
•	The linker will complete by creating an executable file.	

Terminology and Files	

This chapter describes the format of the object file. The object file generally ends 
with a “.o” extension. The format of the executable file is described in a different 
chapter.	
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For example, an assembly source file named “simple.s” would typically be used to 
produce an object file named:	

	 simple.o	

The object file is used as input to the Blitz-64 linker, which produces an “executable 
file”. The linker will take one or more object files, and will produce a single 
executable file.	

The executable file is often call the “a.out” file, although it is generally given a more 
meaningful name. Often the name of the executable file is the same as one of the 
original source files, after removing the “.o”. For example:	

	 simple	

An extension is optional, but if present, .exe is recommended. For example, the 
output file might be given this named instead:	

	 simple.exe	

At some later time, the executable file will be loaded by an operating system and 
executed. Therefore, it must contain all that is necessary for executing the program.	

The Blitz-64 assembler tool is called “asm” and the linker tool is called “link”. 
Another Blitz-64 tool, called “dumpobj”, can be used to print out, in a human 
readable form, either object or executable files.	
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The Object File	

The object file has the following format. The file can be considered as series of fields. 
The length of each field is given in the left-hand column.	

bytes	 field description	

The following fields constitute the header information... 	
	 8	 Magic number "B64objct" (in hex: 0x4236_346F_626A_6374)	
	 8	 Version Number (0x0000_0000_0000_0001)	
	 2	 Blitz-64 ISA Architecture (e.g., 0x0002)	
	 4	 Number of segments	
	 4	 Number of symbols (0 … 2,147,483,647)	
	 4	 Source file name: number of characters (M); 0=source came from stdin	
	 M	 Source file name: the ASCII characters (no terminating \0)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every segment... 	
	 4	 Segment number (1, 2, 3, …)	
	 4	 Source file line number	
	 8	 Length of segment in bytes (possibly zero)	
	 1	 Is Kernel (0=user, 1=kernel)	
	 1	 Is Executable (0=not executable, 1=executable)	
	 1	 Is Writable (0=read-only, 1=read and write)	
	 1	 Is Zero-filled (0=normal, 1=all data is zero)	
	 8	 Starting address from “startaddr=” (-1 = floating)	
	 8	 Assumed value of “gp” from “gp=” (-1 = undefined, -2=default)	

After all segments...	
	 4	 Zero to terminate (in hex: 0x00000000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	
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The following fields are repeated once for every symbol... 	
	 4	 Symbol_number (1, 2, 3, ...)	
	 4	 Source file line number	
	 1	 Type:	
	 	 	 1 = imported	
	 	 	 2 = label	
	 	 	 3 = equate (definition appeared in .equ)	

	 If type = 1 (imported)…	

	 If type = 2 (label)…	
	 	 4	 Segment number in which symbol was defined	
	 	 8	 Offset into segment (where label occurred)	
	 	 1	 Was this symbol exported (0 = local only, 1 = exported)	

	 If type = 3 (equate)…	
	 	 4	 RelativeTo symbol number (0 = offset is an absolute value)	
	 	 8	 Offset (from relativeTo symbol, or value if absolute)	
	 	 1	 Was this symbol exported (0 = local only, 1 = exported)	

	 4	 Symbol name: number of characters (L)	
	 L	 Symbol name: the ASCII characters (no terminating \0)	

After all symbols...	
	 4	 Zero to terminate (in hex: 0x00000000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every patch... 	
	 1	 The patch type (1, 2, …)	
	 4	 Source file line number	
	 4	 The segment where the patch must be made	
	 8	 The location to be patched (i.e., offset into the segment)	

	 4	 The target symbol (0 = absolute)	
	 8	 Offset from target symbol (often zero)	
	 	 	 For patch type = “align”, offset will be 8, 16, 32, or 16384	

	 1	 Exact size of result in bytes (4, 8, 12, 16) or -1 if don’t care	
	 	 	 Used for Formats S1,S2,…S7. For ALIGN this will be -1.	
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After all patch entries...	
	 1	 Zero to terminate (in hex: 0x00)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every segment... 	
	 4	 Segment number	
	 N	 The data bytes, where N is the size of the segment in bytes	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields concern debugger information…  	
	 4	 Package name: number of bytes (M); 0 = No debugger info present	
	 M	 Package name: the UTF-8 encoded characters (with terminating \0)	
	 4	 The second string: number of bytes (N)	
	 N	 The second string: the UTF-8 encoded characters (with terminating \0)	
	 4	 The number of globals; 0 = none present / missing info	
	 4	 The number of functions; 0 = none present / missing info	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every global…	
	 4	 Global name: number of bytes (M); will be > 0	
	 M	 Global name: the UTF-8 encoded characters (with terminating \0)	
	 4	 Source file line number	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Location: The segment number	
	 8	 Location: Offset into segment	

After all global entries...	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every function…	
	 4	 Function name: number of bytes (M); will be > 0	
	 M	 Function name: the UTF-8 encoded characters (with terminating \0)	
	 4	 Source file line number	
	 4	 Location: The segment number	
	 8	 Starting Location: Offset into segment	
	 8	 Beyond Location: Offset into segment (i.e., address of last byte + 1)	
	 4	 Frame size (not negative; 0 = leaf function)	
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The following fields are repeated once for every register parameter…	
	 4	 Source file line number ( >= 0 )	
	 1	 Register number (1 … 15)	
	 4	 Parameter name: number of characters (M); will be > 0	
	 M	 Parameter name: the UTF-8 encoded chars (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

After all register parameters…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every local variable…	
	 4	 Source file line number ( >= 0 )	
	 4	 Offset from stack top	
	 4	 Variable name: number of bytes (M); will be > 0	
	 M	 Variable name: the UTF-8 encoded chars (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

After all local variables…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every statement…	
	 4	 Source file line number ( >= 0 )	
	 4	 Location of code: Segment number	
	 4	 Location of code: Offset into segment	
	 1	 Type Code (0=comment, 1=assign, …)	
If and only if type code = comment, the following will be present…	

	 4	 Comment String: number of bytes (M); will be > 0	
	 M	 Comment String: the UTF-8 encoded chars (with terminating \0)	

After all local statements…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all function entries...	
	 4	 Zero to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	
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Integers	

All integers in the file are stored as signed binary values in Big Endian order, i.e., the 
most significant byte will appear first.	

Integers of the following sizes are used:	

	 number	  number	
 	 of bytes	 of bits	 	
	 byte	 1	 8	
	 word	 4	 32	
	 doubleword	 8	 64	

Magic Number	

The first eight bytes of the object file serve to identify it as a Blitz-64 object file. 
These bytes are the ASCII character codes for the letters “B64objct” (for Blitz-64 
Object), namely the value 0x4236_346F_626A_6374.	

The magic number idea is not a foolproof way to identify files. Although highly 
unlikely to occur by chance, there may happen to be other files that happen to begin 
with these same eight bytes. Although this techniques is by no mean secure, it is a 
good way for the linker to check that it is being given a meaningful file. Also, it allows 
a human looking at the file to guess what sort of data it contains. Although much of 
the file will contain bytes that are not interpretable as text data, the eight bytes of 
the magic number are human-readable, so they should give the reader a clue about 
the file’s nature.	

This technique is also used in other files:	

	 Magic Number	 ASCII Interpretation	
	 object file	 0x4236_346F_626A_6374 	 “B64objct”	
	 executable file	 0x4236_3461_2e6f_7574 	 “B64a.out”	
	 object library file	 0x4236_346F_5F6C_6962 	 “B64o_lib”	
	 load-and-go file 	 0x4236_346C_642B_676F 	 “B64ld+go”	10

 The load-and-go format is no obsolete. The assembler can no longer produce this type of file.10
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The Version Number and ISA Architecture Fields	

Following the magic number is a “version number”. We understand that future 
changes may be required to the format of object files. This field exists to 
accommodate changes, updates, and extensions to this file format.	

This document describes “version 1” of the file format. All files conforming to this 
specification will have the value 1 in this field. Any other value indicates that the 
remainder of the file will conform to a different specification.	

At this time, there is only one version of this file format and the assembler and linker 
are is only capable of dealing with “version 1” files. Future versions may be capable 
of handling different versions.	

Details about future version and compatibility between the tools must be 
documented in the future, obviously.	

The “ISA Architecture” field specifies which type of machine this code is intended to 
be run on. This value must match the value from the version number in bits [30:16] 
of the CSR register csr_version. In other words, the numbers used in this field and 
the in csr_version are drawn from the same set and therefore have the same values 
and meanings.	

At this time, the current version Blitz-64 Instruction Set Architecture (ISA) is	

	 0x0002	

In the future, changes and/or additions to the machine code instructions are likely. 
For example, we plan to specify and implement the compressed instruction set in 
the future. When changes are made to the ISA , the csr_version will be changed 
(incremented) to reflect a modified architecture.	

Commentary  We separate out the “file version number” and the “ISA architecture 
version” into two fields because these really track two different kinds of changes 
that can be made in the future. A change to the machine architecture may not 
require a change to the file format. Conversely, a change to the file format may be 
implemented even though there is no change to the ISA.	
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Separators (********)	

As an internal consistency check, there will be 8 bytes of “separator” data placed at 
the indicated points in the file. These eight bytes are the ASCII character codes for 
the characters “********”. That is, the separator doubleword is 
0x2A2A_2A2A_2A2A_2A2A.	

If there is some inconsistency between the text or data segment sizes and the actual 
number of bytes provided, then these separators may help to catch the error. The 
linker will check that the separator characters appear correctly at the places in the 
object file where they are supposed to appear, and print error messages if not.	

Segment Information	

Each segment in the object file is given a sequential number, starting with 1.	

[ Typically we expect the number of segments to be under 10. There will be at least 
one segment in the file and it is likely that other constraints will prevent the upper 
limit of 2,147,483,647 segments ever being reached. ]	

Each segment corresponds to a single .begin instruction in the source file.	

A segment represents a block of bytes containing instructions and/or data. The 
segment will be loaded into memory by the operating system at the time the 
program is to be executed.	

The block of bytes will appear in the object file and the linker will copy the block to 
the executable file. However, if the segment is marked “zero-filled”, the block of 
bytes (which will all be 0x00) will not be stored in the object file or in the executable 
file. At execution time, the operating system will initialize the bytes of the segment 
to zeros, as it allocates memory pages for the process.	
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The linker will determine where in memory to place each segment. The following 
pieces of data will be used by the linker to determine where to place the segment:	

	 • Length of segment in bytes	
	 • Starting address from “startaddr=”	
	 • Is Kernel (0=user, 1=kernel)	
	 • Is Executable (0=not executable, 1=executable)	
	 • Is Writable (0=read-only, 1=read and write)	
	 • Is Zero-filled (0=normal, 1=all data is zero)	

The length of the segment is given in bytes and may even be zero, although why a 
programmer would create such a segment is hard to imagine.	

The .begin instruction may include the “startaddr=” parameter. If so, the 
programmer has specified exactly where in memory to place the segment.	

If the startaddr= parameter is undefined, the linker will rely the “Is Kernel” value. 
Kernel segments will be placed in low memory, as near to address 0x0_0000_0000 
as possible. User segments will be placed in the virtual address region, which begins 
at address 0x8_0000_0000.	

The linker will begin by placing the segments with predetermined addresses at their 
locations. Then the linker will place floating segments (i.e., segments without a 
startaddr= parameter) in the remaining area. (The placement algorithm is 
described elsewhere in this document.)	

The linker is aware of pages and the fact that each page will either be marked 
“writable” or not, and that each page will either be marked “executable” or not.	

The following kinds of pages are possible. The linker will determine how many 
pages are required at runtime and will only place like segments in any page.	

	 	 writable	 executable	
	 read-only	 no	 no	
	 read-write	 yes	 no	
	 code-only	 no	 yes	
	 code-and-data	 yes	 yes	

Each segment will also have a “gp=” parameter. This parameter will have as its value 
a 36 bit address (0x0 … 0x0000_000F_FFFF_FFFF). This parameter may also be 
“undefined”, in which case the object file will contain the value -1 
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(0xFFFF_FFFF_FFFF_FFFF). This parameter may also be “default”, in which case the 
object file will contain the value -2 (0xFFFF_FFFF_FFFF_FFFE).	

The gp= parameter will be used by the linker when processing the patches. For 
example, one patch might indicate that a segment contains the following synthetic 
instruction:	

loadb    r5,MySymbol

where “MySymbol” was imported. Since the value of the symbol will not be known 
until link time, the linker will be tasked with translating this synthetic instruction 
into one or more machine instructions.	

Assuming that register “gp” contains a value such as 0x8_0000_8000 (which is 
typical for user programs) and that “mySymbol” has a value such as 0x8_0000_8123, 
the linker can replace the synthetic instruction with this machine instruction:	

load.b   r5,0x123(gp)

However, if register gp happens to be undefined or has some other value, the linker 
will be required to use a different instruction.	

After the symbol information in the object file, the segment data will actually appear.	

The segments will be given in order. In other words, the data for segment #1 will 
come first, followed by the data for segment #2, and so on.	

For zero-filled segments, there will be not be an entry with zero bytes; the entry will 
simply be missing.	

The segment length is not constrained to be a multiple of anything and may be zero.	

Symbols in the Object File	

A single executable program may originate from several source files. Each source file 
will be assembled into an object file. These object files will then be combined in the 
linking phase to produce a single executable file.	
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The program is composed of several object files and each object file corresponds to a 
single source file. The linking process then combines the object files to produce the 
executable file.	

Code in one object file may refer to addresses, instructions, data, and values defined 
in other object files. As an example, object file A may define a function called “printf” 
and object file B may call this function. When object file B is assembled, there is no 
information about where the “printf” function will be located or even what object 
file it will be in. As the linker processes all object files, it will modify the “call” 
instruction to fill in the final address of the “printf” function, in a process we call 
“patching”. (Traditionally, this has also been called “relocation”.)	

Symbols are used to share such things as the address of the “printf” function across 
object file boundaries. Object file A would export the symbol “printf” and object file 
B would import “printf”.	

Ultimately each symbol must be assigned a value which will be a 64 bit signed 
integer. The linker will determine that value and will issue an error if it cannot 
determine the value of some symbol.	

The value of each symbol will be either (1) the address of a location in some 
segment or (2) an absolute value, which is not the address of any location.	

Since addresses are not determined until link time, any symbol which originates as a 
label (or an .equ to a label) will not have an actual value until link-time. Some 
symbols may have an absolute value known in the object file where it is defined, but 
this value will be unknown in any object file that imports the symbol.	

The Symbol List	

The next section of the object file consists of a number of symbols. For example, an 
object file may contain 100 symbols. Each of the 100 symbols is represented in the 
object file with a “symbol entry”, which will have information such as “symbol 
number”, “type”, “relative to”, and the characters of the symbol’s name.	

The symbols within each object file are sequentially numbered, starting with 1. 
These numbers are local to only that object file. The numbers are used in:	
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	 • The definition of other symbols	
	 	 A symbol can be given a value of “OtherSymbol + offset”	
	 • The patch entries	
	 	 A synthetic instruction may use a symbol as its argument.	

Each symbol has a name, which is a character string, and the symbol entry contains 
the string. The symbol name is used to match an exported symbol from one file with 
an imported symbol in another file. For this matching, symbol names are case-
sensitive and must match exactly. The string is specified using length in bytes. No 
terminating character (\0 or \n) is used. ASCII encoding is used; only ASCII 
characters are allowed in symbols.	

Each symbol in an object file has a type code, which indicates how that symbol was 
defined:	

	 1 = imported	
	 2 = label	
	 3 = equate	

If a symbol is “imported”, then the object file contained no definitions that symbol. 
Instead, the symbol is assumed to be exported by some other file. The linker must 
locate the definition (by matching the characters in the symbol name) and must tie 
the uses of the symbol in this object file to the definition in the other object file.	

For a symbol of type “label”, the symbol was defined by labeling an address in this 
object file. The definition consists of the segment that contained the label and the 
offset into that segment of the byte location that had the label.	

Note that the linker will translate synthetic instructions into machine instructions. 
When translating a synthetic instruction which requires more than one machine 
instruction, the linker may be required to insert additional bytes into the middle of 
some segment. Whenever the linker inserts such additional bytes, it will update and 
shift the definition of all labels in that segment following the insertion.	

The other way in which a symbol can be defined is with a .equ equate instruction. A 
symbol can either be equated to an absolute value that was known to the assembler 
or to some other symbol.	

For any symbol given an absolute value (which will be a 64 bit signed integer), the 
symbol entry in the object file will be marked “equate” and will use the special value 
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of zero for the “relativeTo” field and the “offset” field will contain the actual value. 
(Perhaps an absolute value should be thought of as an offset from zero.)	

For any symbol that is given a value in a .equ equate instruction where the value is 
not an absolute value known to the assembler, the definition will be of the form:	

Symbol:   .equ   OtherSymbol + IntegerOffset

The definition may not have that exact form, but it will be reduced to that. For 
example:	

Sym43:   .equ   (-0x123 <<4 ) + Lab_98

The OtherSymbol may be defined in the current object file or may be an imported 
symbol. If it is defined in this file, then it will be a “label” type symbol. (If 
OtherSymbol had been an absolute value, then the assembler would have evaluated 
the expression, determined the value, and made this symbol an absolute value, not a 
“relative to” symbol.)	

Regardless of how the symbol was defined (either as a label or in an equate), the 
symbol may or may not have been exported. Another field in the symbol entry will 
indicate whether or not the symbol is exported.	

If a symbol is exported, then the linker will link it with any identically spelled 
symbol that is imported in another object file.	

All exported symbols from all object files must be unique. It is an error for the same 
symbol to be exported from more that one object file. The linker will catch and 
report this error.	

Symbols that are not exported are considered to be “local” to a single object file. 
Different object files may use identically spelled symbol names for different 
purposes; such symbols are completely unrelated and will have totally different 
definitions.	

The purpose for including local symbols in the object file is that they can provide 
useful information to a debugger. Local symbols will be included in the executable 
file, but only for the purpose of debugging. They will not impact execution in any 
way.	
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For example, it is common for the programmer to create many local labels as targets 
for BRANCH, JUMP, and CALL instructions. It is very helpful when disassembling 
instructions in a debugger to be able to show the local labels to help the 
programmer get oriented and make sense of the disassembled instructions. As 
another example, unusual constants may be equated to local symbol names; 
displaying these symbolic names during debugging may make dissembled code 
easier to interpret.	

The symbols are given in numerical order in the object file. After the last symbol, the 
list will be followed with a zero and a “********” separator. These will signal the end 
of the list.	

Patch Entries	

Next in the file will be a list of patch entries, each describing a patch that must be 
made by the linker.	

Each patch entry will begin with a “type” code. The list of patch entries will be 
followed by a zero and a “********” separator. These will signal the end of the list.	

Each path entry has this form (repeated from above):	

The following fields are repeated once for every patch... 	

	 1	 The patch type (1, 2, …)	
	 4	 Source file line number	
	 4	 The segment where the patch must be made	
	 8	 The location to be patched (i.e., offset into the segment)	

	 4	 The target symbol (0 = absolute)	
	 8	 Offset from target symbol (often zero)	
	 	 	 For patch type = “align”, offset will be 8, 16, 32, or 16384	

	 1	 Exact size of result in bytes (4, 8, 12, 16) or -1 if don’t care	
	 	 	 Only for Format S1,S2,…S7.	

The “patch type” tells which synthetic instruction appeared in the source file, so the 
linker can know what instructions to generate.	
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The .byte, .halfword, .word, and .doubleword pseudo-ops can have as an operand 
an expression which has a value that cannot be determined until link time. There are 
4 patch types, one for each of these.	

The .align pseudo-op may also require linker attention and there is a special patch 
type for it, as well.	

The “source line number” is used in error messages printed by the linker, but not 
otherwise used, with one interesting exception. Consider the following assembly 
code:	

label:
        .align   16

The assembler will insert zero bytes for the .align pseudo-op, leaving the task to the 
linker. Thus, the label and the align will both be located at the same offset in the 
segment. As far as the object file goes, this code is indistinguishable from the 
following:	

        .align   16
label:

But what happens if the linker is required to insert several bytes for the .align 
pseudo-op? These cases must be handled differently! In the first case, the label must 
be associated with the first padding byte; in the second case, the label must be 
associated with the first byte after the padding.	

The line number on the symbol and the line number on the patch are used by the 
linker to distinguish these cases.	

The “segment number” and “location to be patched” give the location that must be 
modified. The linker is required to change and/or insert bytes at that location.	

For synthetic instructions that must be patched, there is always an “address” or 
“value” that could not be determined by the assembler. There are two cases:	

	 An absolute number	
	 	 The “target symbol” will be zero and “offset” will contain the value	
	 A symbolic address	
	 	 The “target symbol” will indicate which symbol was used.	
	 	 There may be an optional “offset” from the target symbol.	
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Once the linker determines the final address of the target symbol, the linker will add 
in the “offset”, which is often zero. Then the linker can determine exactly which 
machine instructions are required and can modify the segment accordingly.	

For synthetic instructions, the linker will be replacing the synthetic instruction by 1, 
2, 3, or 4 machine instructions. Generally speaking, the assembler will either be 
unable to determine what the linker will do or will not care. In such cases, the “exact 
size” field will be -1 (i.e. “don’t care”).	

However, in some cases, the size of the translation was important during assembly. 
The “exact size” field gives information about how many bytes the assembler has 
concluded will be needed for the translation.	

Even though the assembler may have been able to determine that some instruction 
could be translated by a given number of bytes, it may have been unable to perform 
the actual translation. This might have occurred because the assembler was unable 
to know exactly what the linker would do for some other instructions somewhere 
else. However, the assembler may have depended on the translation for the 
instruction being some exact size. This size expectation is captured in the “exact 
size” field. The linker must ensure that its translation is the size expected by the 
assembler, but this will never be a problem since the assembler will only make such 
assumptions when it knows the linker can meet its size expectations.	

For the BYTE, HALFWORD, WORD, and DOUBLEWORD patches, the exact size field 
will be 1, 2, 4, and 8, respectively.	

In the case of ALIGN patches, all fields are present:	

	 target symbol — ignored (will be 0)	
	 offset — will be 8, 16, 32, or 16384	
	 exact size — ignored (will be -1)	

How many bytes will be present in the file?	

For synthetic instructions (i.e., S-1 through S-7), if the exactSize field is 4, 8, 12, or 
16, then the object file will contain exactly that number of bytes. It the exactSize field 
is -1 (don’t care), then the file will contain exactly 4 bytes.	

If registers were used in the synthetic instruction, the first 4 bytes will contain the 
register identities in their proper places. To be more precise, when expressed in hex, 
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the first word will have the following format, where 3, 2, 1, and D symbolically 
represent the bit fields for encoding registers Reg3, Reg2, Reg1, and RegD, 
respectively.	

	 0000321D	

Since each register is encoded with 4 bits, the first word will have this format, 
expressed in binary:	

	 0000 0000   0000 0000   3333 2222   1111 DDDD	

For the BYTE, HALFWORD, WORD, and DOUBLEWORD patches, the object file will 
contain 1, 2, 4, and 8 bytes, respectively.	

For all ALIGN patches, the object file will contain 0 bytes.	

The Patch Types	

There are 25 patch types, numbered 1 … 25:	

Format S-1:	
	 Patch Type 1	
	 	 MOVI (regD ≠ gp)	
	 Patch Type 2	
	 	 MOVI (regD = gp)	

Format S-2:	
	 Patch Type 3	
	 	 BEQ    Reg1,Reg2,Address	
	 Patch Type 4	
	 	 BNE    Reg1,Reg2,Address	
	 Patch Type 5	
	 	 BLT    Reg1,Reg2,Address	
	 Patch Type 6	
	 	 BLE    Reg1,Reg2,Address	
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Format S-3:	
	 Patch Type 7	
	 	 JUMP   Address	
	 Patch Type 8	
	 	 CALL    Address	

Format S-4:	
	 Patch Type 9	
	 	 LOADB    Regd,Address	
	 Patch Type 10	
	 	 LOADH    Regd,Address	
	 Patch Type 11	
	 	 LOADW    Regd,Address	
	 Patch Type 12	
	 	 LOADD    Regd,Address	

Format S-5:	
	 Patch Type 13	
	 	 LOADB    Regd,Offset(Reg1)	
	 Patch Type 14	
	 	 LOADH    Regd,Offset(Reg1)	
	 Patch Type 15	
	 	 LOADW    Regd,Offset(Reg1)	
	 Patch Type 16	
	 	 LOADD    Regd,Offset(Reg1)	

Format S-6:	
	 Patch Type 17	
	 	 STOREB    Address,Reg2	
	 Patch Type 18	
	 	 STOREH    Address,Reg2	
	 Patch Type 19	
	 	 STOREW    Address,Reg2	
	 Patch Type 20	
	 	 STORED    Address,Reg2	
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Format S-7:	
	 Patch Type 21	
	 	 STOREB    Offset(Reg1),Reg2	
	 Patch Type 22	
	 	 STOREH    Offset(Reg1),Reg2	
	 Patch Type 23	
	 	 STOREW    Offset(Reg1),Reg2	
	 Patch Type 24	
	 	 STORED    Offset(Reg1),Reg2	

Align:	
	 Patch Type 25	
	 	 “offset” contains the alignment requirement	

Data:	
	 Patch Type 26	
	 	 BYTE — The linker will print an error if the value will not fit	
	 Patch Type 27	
	 	 HALFWORD — The linker will print an error if the value will not fit	
	 Patch Type 28	
	 	 WORD — The linker will print an error if the value will not fit	
	 Patch Type 29	
	 	 DOUBLEWORD	

Order of patches within an object file:	

Each patch applies to a location within a segment. The patches in an object file must 
be in proper order, as discussed next:	

The patches for all segments must appear together. The segments must appear in 
order. For example, all patches for segment #1 must  be placed before the patches 
for segment #2.	

Furthermore, all patches for a given segment must be in order by the location to be 
patched. For example, a patch to offset 0x40 in segment #2, must come before a 
patch to offset 0x44 in that segment.	
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The following patch types are not used:	

All instructions of format B, C, and D instructions require an immediate value as an 
operand. The assembler requires such an immediate value to be knowable by the 
assembler from the information in the assembly source file. Thus, for these 
instructions, the assembler will produce the final machine code and the linker will 
never need to modify them.	

Therefore, the following patch types are not required, not used, and not 
implemented.	

Format B:	
	 Patch Type XXX	
	 	 immed-16 — Errors would occur if the value will not fit	

Format C:	
	 Patch Type XXX	
	 	 immed-16 — Errors would occur if the value will not fit	

Format D:	
	 Patch Type XXX	
	 	 immed-20 — Errors would occur if the value will not fit	
	 	 Normally UPPER20/AUIPC/JAL/ADDPC	
	 	 	 are the result of synthetic instruction translation.	

Debugging Information - Header Info	

The segments, the symbols, and the patches are not optional. Every .o object file will 
contain that information.	

But after these, the file might or might not contain additional information to support 
the runtime debugger, which we describe next.	

The debugging information is optional. If the -nodebug option was specified on the 
assembler command line, then no debugging information will be added to the object 
file. Also, if the file contained no debugging pseudo-ops, then no debugging 
information will added to the object file. Otherwise, the information will be included 
at the end of the file.	
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The debugging information begins with a header block of data. If debugging 
information is not included in the file, the the header information will contain the 
following values to signal this and the object file will include nothing further.	

Field	 Value	
Package name, number of bytes	 0	
Package name string	 < no bytes >	
The second string, number of bytes	 0	
The second string	 < no bytes >	
The number of globals	 0	
The number of functions	 0	
Separator (“********”)	 0x2A2A_2A2A_2A2A_2A2A	

Otherwise, the package name and the second string (which come from 
the .sourcefile pseudo-op will be present. These are null-terminated UTF-8 strings, 
and their sizes (in bytes, including the \0) are also given.	

Since both strings will contain at least the \0 character, their lengths will be greater 
than 0. The empty header can be differentiated by the first field, i.e., the number of 
bytes in the package name string.	

Following the debugging header block there will be a number of globals and a 
number of functions.	

Debugging Information - Global Blocks	

For each appearance of a .global pseudo-op in the source file, there will be a single 
block of information. Each block will include these fields:	

bytes	 field description	
	 4	 Global name: number of bytes (M); will be > 0	
	 M	 Global name: the UTF-8 encoded string (with terminating \0)	
	 4	 Source file line number	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Location: The segment number	
	 8	 Location: Offset into segment	

The name of the variable (as given in the .global pseudo-op) is a null-terminated 
UTF-8 string; its size (in bytes, including the \0) is also given. This is followed by the 
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source code line number, as given in the .global following “line=”. (This is 
presumably the line number from a KPL source code file and not the line number in 
the .s file.).	

The type of the variable is indicated by a single character. This simple typing scheme 
doesn’t match the richness of KPL’s type system, but is enough to support debugging 
at the machine code level.	

The .global pseudo-op should be placed in the .s file directly before the variable to 
which it applies. For example:	

.global "myVar", line = 60, type = "I"
P_MyPack_myVar_43:

.doubleword 0

The name in the .global is what the KPL programmer used; the label in the .s file is 
the (presumably mangled) name generated by the compiler.	

The address of the next thing following the .global will be associated with this 
debugging information. The “location” fields in the global data block give the 
segment and offset at which that thing will be located. During the linking step, the 
linker will place the segments in memory, and will determine the actual address at 
that time. The debugger will use this information to know that an integer (a signed 
64-bit value) with name “myVar” (defined on source code line 60) is stored at the 
address.	

The assembler and linker do not check whether the .global is placed before the 
correct instruction and do not check whether the type code is correct. For example, 
the assembler and linker will accept the following with no complaint. Obviously, the 
location will contain a couple of machine code instructions, not a pointer (P). This 
will trick the debugger, which will display “myVar” as a pointer, interpreting the 
machine code bits for these instructions as an address. (Since this would confuse 
anyone using the debugger, the compiler will only place a .global pseudo-op directly 
before the data bytes to which it applies.)	

.global "myVar", line = 60, type = "P"
add r1,r2,r3
xori r3,r4,567
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Type Codes Used for Debugging	

Here are the single character codes used. The type code will be a single character. 
Compound types (such as “PI” for “ptr to int”) are not supported.	

	 I	 int	 64-bit signed integer	
	 W	 word	 32 bit signed integer	
	 H	 halfword	 16 bit signed integer	
	 C	 byte (C = Char)	 8 bit signed integer or ASCII char	
	 L	 bool (L = Logical)	 TRUE / FALSE, 8 bits	
	 D	 double	 64 bit double-precision floating point	
	 S	 String	 Array of bytes; UTF-8 encoded	
	 P	 ptr	 Pointer, 64 bits	
	 A	 array	 	
	 O	 object	 	
	 R	 struct (R = Record)	 	
	 U	 union	 	
	 ?	 other / unknown /missing	

The same type code characters are used in .global, .regparm, and .local pseudo-ops.	

Debugging Information - Function Blocks	

For each appearance of a .function pseudo-op in the source file, there will be a 
single block of information.	

The .function pseudo-op is used to give the debugger information about a function 
or a method. The debugger treats methods and functions the same way. The receiver 
(i.e., “self”) is always a pointer to an object and is always the first parameter, so it 
will be in register r1. Otherwise, the code for methods and functions is identical.	
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Each function block will include these fields:	

bytes	 field description	
	 4	 Function name: number of bytes (M); will be > 0	
	 M	 Function name: the UTF-8 encoded string (with terminating \0)	
	 4	 Source file line number	
	 4	 Location: The segment number	
	 8	 Starting Location: Offset into segment	
	 8	 Beyond Location: Offset into segment (i.e., address of last byte + 1)	
	 4	 Frame size (not negative; 0 = leaf function)	

Following each function block, will be zero or more “register parameter blocks” with 
one for each .regparm pseudo-op appearing after the .function.	

Following the register parameter blocks, will be zero or more “local variable blocks” 
with one for each .local pseudo-op appearing after the .function.	

Following the local variable blocks, will be zero or more “statement blocks” with one 
for each .stmt / .comment pseudo-op appearing after the .function.	

The name of the function or method (as given in the .function pseudo-op) is a null-
terminated UTF-8 string; its size (in bytes, including the \0) is also given. This is 
followed by the source code line number, as given in the .function pseudo-op 
following “line=”. (This will be the line number from a KPL source code file and not 
the line number in the .s file.).	

The function block tells where the function’s code begins and where it ends, as 
determined by the placement of the .function and .endfunction pseudo-ops. These 
are given by offsets into a segment and these locations will be turned into addresses 
by the linker. The ending address is given as the location just past the end of the 
function (i.e., the location of the next thing following the function).	

The framesize field gives the size of the stack frame in bytes and will always be a 
positive multiple of 8. A zero value indicates that this block describes a leaf function. 
The debugger needs this information in order to go down into the stack to retrieve 
information from buried stack frames.	

Note that the framesize is the amount that register sp is adjusted whenever this 
function is invoked. Leaf functions will often use elements above the stack top (i.e., 
with lower addresses), but they must not adjust register sp, or else the debugger 
will become very confused. ( This is because the debugger must be able to locate the 
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return address field in buried frames. From the return address, the debugger can 
deduce which function was executing and, from that, the debugger can deduce the 
frame sizes of buried frames, which it needs to know in order to work its way 
further down the stack. )	

Debugging Information - Register Parameter Blocks	

For each appearance of a .regparm pseudo-op following a .function, there will be a 
single block of “register parameter” information. Each block will include these fields:	

bytes	 field description	
	 4	 Source file line number ( >= 0 )	
	 1	 Register number (1 … 15)	
	 4	 Parameter name: number of bytes (M); will be > 0	
	 M	 Parameter name: the UTF-8 encoded string (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

The name of the parameter is a null-terminated UTF-8 string which comes from 
the .regparm pseudo-op. Likewise, the source code line number comes from “line=” 
the .regparm pseudo-op.	

The line number will never be negative. The line number field is listed first and a 
value of -1 is used to terminate the list of register parameter blocks.	

The register number will normally be 1 … 7 since the standard calling conventions 
use only registers r1 … r7 for passing parameters. The debugger may or may not be 
able to cope with values 8 … 15.	

The type code character meanings were listed above.	

All the register parameter blocks for a given function will occur in the object file 
directly after the function block and before the local variable blocks and statement 
blocks, regardless of their order in the .s file.	
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Debugging Information - Local Variable Blocks	

For each appearance of a .local pseudo-op following a .function, there will be a 
single block of “local variable” information. Each block will include these fields:	

bytes	 field description	
	 4	 Source file line number ( >= 0 )	
	 4	 Offset from stack top	
	 4	 Variable name: number of bytes (M); will be > 0	
	 M	 Variable name: the UTF-8 encoded string (with terminating \0)	
	 1	 Type Code (One character code, e.g. ‘I’)	

The name of the local variable is a null-terminated UTF-8 string which comes from 
the .local pseudo-op. Likewise, the source code line number comes from “line=” on 
the .local pseudo-op.	

The line number will never be negative. The line number field is listed first and a 
value of -1 is used to terminate the list of local variable blocks.	

The offset tells where in the stack frame the parameter or local variable will be 
located. The offset is in bytes, relative to the stock top. A more positive offset is 
buried deeper in the stack.	

For parameters passed on the stack, the data in memory will be valid at the time the 
function is called. In other words, the calling conventions require that the argument 
be placed in the stack at the given offset before the CALL instruction is executed.	

However, during the execution of any function (or method), parameters and local 
variables will often be cached in registers. Even though the compiler has included 
a .local pseudo-op to describe a parameter or a local variable, it is likely that the 
value will be cached in a register for much of the execution of the function, and the 
debugger will not know about this. Be aware of this.	

The type code character meanings were listed above.	

All the local variable blocks for a given function will occur in the object file directly 
after the register parameter blocks and before the statement blocks, regardless of 
their order in the .s file.	
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Debugging Information - Statement Blocks	

For each appearance of a .stmt pseudo-op following a .function, there will be a 
single block of “statement” information. The .comment pseudo-op is handled as a 
special case of the statement block. For each .comment there will be a single 
statement block as described here. In other words, the following block of 
information describes either a .stmt or .comment pseudo-op, as differentiated by 
the typecode field.	

Each statement block will include these fields:	

bytes	 field description	
	 4	 Source file line number ( >= 0 )	
	 4	 Location: Segment number	
	 4	 Location: Offset into segment	
	 1	 Type Code (0=comment, 1=assign, …)	

If and only if type code = 0/comment, the following will be present…	
	 4	 Comment String: number of bytes (M); will be > 0	
	 M	 Comment String: the UTF-8 encoded string (with terminating \0)	

The source code line number comes from “line=” on the .stmt. There is no associated 
line number for a .comment so this field will be 0 for .comment pseudo-ops. The 
line number will never be negative. The line number field is listed first and a value of 
-1 is used to terminate the list of statement blocks.	

The .stmt or .comment applies to the thing that follows it. The location given here 
will be translated by the linker into an address.	

Furthermore, the statement blocks for a given function are guaranteed to be in order 
by location. They will be in the same order they occurred in the .s file.	
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The type code are integer codes. For example:	

0 comment < from .comment pseudo-op >
1 assign ASSIGNMENT statement
2 if IF statement
3 then THEN statements
4 else ELSE statements
5 call CALL statement	
6 send SEND statement
7 while_expr WHILE LOOP (expr evaluation)	
8 while_body WHILE LOOP (body statements)	
9 do_body DO UNTIL (body statements)	

	 	 … etc… 	

All the statement blocks for a given function will occur in the object file directly after 
the local variable blocks.	

If, and only if, the type code is 0, then this statement block of data describes 
a .comment pseudo-op. For such a block, there will also be a string, which gives the 
comment information. The comment is a null-terminated UTF-8 string. 
The .comment does not have a “line=“ field; the value of the source code line 
number will be 0.	

Future Work	

The fields of the .o object file are not properly aligned. This creates a potential 
performance problem for the file I/O performed by the asm, link, and createlib 
tools.	

Typically, files are implemented with memory-mapped I/O. File READ and WRITE 
operations end up becoming nothing more than memory-to-memory data 
movement. Thus, proper alignment may speed up file operations, at the cost of 
increasing file size.	

Perhaps the file format needs to be redefined so that all fields are properly aligned. 
This would require changes to the asm, link, createlib, and dumpobj tools.	
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Segment sizes are not constrained to be a multiple of any number. We ought to add a 
padding field (with 0 … 7 padding bytes) to follow the data for each segment, in 
order to make sure that all subsequent segment data chunks are doubleword 
aligned.	

The changes described here can be expected to have only a modest impact on the 
performance of the asm, link, and createlib tools. We think “modest” because these 
tools don’t spend much time performing I/O. The bulk of processing for these tools 
is spent manipulating in-memory data structures.	

On the other hand, the .o object file format has been designed to minimize file size, 
which also contributes to performance. Without empirical testing, it is not certain 
that performance would be significantly improved by redesigning the object file 
format.	

Therefore, these proposed changes will not be pursued.	
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Quick Summary	

• The linker produces an executable file.	
• The executable file is loaded by the OS kernel at runtime.	
• The format of the executable file is given, including:	
	 — Version and machine architecture identification	
	 — The number of pages, and addresses of the pages	
	 	 	 For each page, its “writable” and “executable” attributes are given.	
	 — A number of segments	
	 	 	 For each segment, the address, length, and data bytes are given.	
	 — The entry point, an address at which to begin execution	
• The executable file also contains a “debugger info section”.	
	 — The debugger info is used in reporting runtime error messages.	
	 — The debugger info will be used by the debugger tool.	
	 	

Introduction	

The linker tool takes one or more object files and combines them, producing an 
executable file. The executable file contains all the information needed by the OS 
kernel to load the program into memory and begin execution.	

In this chapter we give the format of the executable file.	

In Unix/Linux, executable files are sometimes called “a.out” files.	
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File Format	

An executable file has two sections called the “executable section” and the 
“debugger info section”. The first part of the file contains all information needed to 
load a virtual address space and commence execution. The second part of the file 
contains information that will only be needed if errors arise during execution or if a 
debugging tool is used.	

Every file always has both sections. The debugger info section always follows the 
executable section. There are no bytes outside of the sections. In other words, the 
length of the file is simply the length of the executable section plus the length of the 
debugger info section. The sections are concatenated to create the complete file.	

The debugger info section can be safely ignored for now. The debugger info section 
is discussed later in this chapter, after the description of the execution section.	

The file can be considered as series of fields. The length of each field is given in the 
left-hand column.	

The executable section of the file has the following format.	

bytes	 field description	

The following fields constitute the header information... 	
	 8	 Magic number “B64a.out” (in hex: 0x4236_3461_2E6F_7574)	
	 8	 Version Number (0x0000_0000_0000_0001)	
	 2	 Blitz-64 ISA Architecture (e.g., 0x0002)	
	 2	 Padding (0x0000)	
	 4	 Number of pages (0 if this is a kernel program)	
	 8	 Lowest used address	
	 8	 Highest used address	
	 8	 Entry Point	
	 4	 Number of modules	
	 4	 Number of symbols	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	
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The following fields are repeated once for every region... 	
	 8	 Starting Address (0x0 … 0xF_FFFF_C000)	
	 4	 Number of pages	
	 1	 Is Executable?  (1=pages should be marked “executable”)	
	 1	 Is Writable?  (1=pages should be marked “writable”)	
	 2	 Padding (0x0000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all regions... 	
	 8	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	

The following fields are repeated once for every segment... 	
	 8	 Starting Address (0x0 … 0xF_FFFF_FFF8). Will be a multiple of 8.	
	 8	 Length in bytes (N). Will be a multiple of 8.	
	 4	 Number of module from which this came	
	 4	 Source code line number	
	 7	 Padding (0x00_0000_0000_0000)	
	 1	 Is zero-filled? (1=zerofilled; 0=data bytes are present)	
	 N	 The bytes to load into memory. (Only if IsZerofilled=0)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all segments... 	
	 8	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every module...	
	 4	 Number of module (1, 2, 3, …)	
	 4	 Name of .s source file: number of characters (L)	
	 L	 Name of .s source file: the ASCII characters (no terminating \0)	

After all modules...	
	 8	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	
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The following fields are repeated once for every symbol...	
	 4	 Number of module which defined this symbol (1, 2, 3, …)	
	 4	 Source file line number	
	 8	 Value of this symbol	
	 1	 Is Label?	
	 	 	 0 = this value is probably not an address	
	 	 	 1 = this symbol derives from a label definition	
	 4	 Symbol name: number of characters (M)	
	 M	 Symbol name: the ASCII characters (no terminating \0)	

After all symbols...	
	 4	 -1 to terminate (in hex: 0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After the Executable Section...	
	 ( The Debugger Info Section, which is discussed later )	

Magic Number	

Every executable file begins with a special doubleword value. This value of this 
“magic number” can be interpreted as the ASCII encoding of the characters 
“B64a.out”.	

Since all valid executable files begin with this value and since this particular value is 
highly unlikely to occur in other files, this is a fairly good way to catch accidental 
user errors. For example, any attempt to execute a “.o” object file or to  give an 
executable file as input to the linker tool will be caught by the magic number check.	

The Version Number and ISA Architecture Fields	

Following the magic number is a “version number”. We understand that future 
changes may be required to the format of executable files. This field exists to 
accommodate changes, updates, and extensions to this file format.	
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This document describes “version 1” of the file format. All files conforming to this 
specification will have the value 1 in this field. Any other value indicates that the 
remainder of the file will conform to a different specification.	

At this time, there is only one version of this file format and the linker is only capable 
of producing “version 1” files. Future versions of the linker tool may be capable of 
producing different versions.	

Future versions of the Blitz kernel may or may not be able to load and execute files 
in the “version 1” format or other versions. Details about future compatibility must 
be documented in the future, obviously.	

The “ISA Architecture” field specifies which type of machine this code is intended to 
be run on. This value must match the value from the version number in bits [30:16] 
of the CSR register csr_version. In other words, the numbers used in this field and 
the in csr_version are drawn from the same set and therefore have the same values 
and meanings.	

At this time, the current version Blitz-64 Instruction Set Architecture (ISA) is	

	 0x0002	

In the future, changes and/or additions to the machine code instructions are likely. 
For example, we plan to specify and implement the compressed instruction set in 
the future. When changes are made to the ISA , the csr_version will be changed 
(incremented) to reflect a modified architecture.	

Commentary  We separate out the “file version number” and the “ISA architecture 
version” into two fields because these really track two different kinds of changes 
that can be made in the future. A change to the machine architecture may not 
require a change to the file format. Conversely, a change to the file format may be 
implemented even though there is no change to the ISA.	

Commentary  A “Fat Executable” file contains multiple copies of the executable 
code, each assembled for a different architecture. This effectively combines several 
executable modules into a single file. The benefit of doing this is that a single 
executable file can be run on different machines and is therefore, to this extent, 
portable. At this time, we avoid fat executables, but if this added in the future, the file 
format will need to be modified to accommodate multiple architectures. At that time, 
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the file format “version number” will be increased to reflect the changes to the file 
format.	

Padding Bytes	

Executable files contain a large amount of data that must be moved from the file into 
memory. It is crucial that loading an executable into memory be made as fast as 
possible, since load-time is consumed whenever a program is executed.	

In order to speed up this copying, it is important for the data to be properly aligned.	

To make sure subsequent fields are doubleword aligned, there are “padding bytes” 
inserted into the executable file in a couple of places. These byte should be zeros.	

Number of Pages	

Every executable is either a “kernel program” or a “user program”. Kernel programs 
will be loaded into kernel memory  (i.e., addresses within 0x0 … 0x3_FFFF_FFFF). 
User programs will be loaded into the virtual memory region (i.e., addresses within 
0x8_0000_0000 … 0xF_FFFF_FFFF).	

If this file contains a kernel program, the “number of pages” field will be 0 and there 
will be no regions. Otherwise, this field will indicate the number of memory pages 
that are required to run this program.	

Typically, the OS kernel will allocate the required number of pages all at once, and 
then fill them in subsequently. (This is because allocating the pages piecemeal may 
result in a deadlock. Consider the situation in which some processes have grabbed 
some of the pages they need but are waiting to get additional pages.)	

In order to know how many pages are required (so they can all be obtained before 
any are needed), this field tells how many will be required.	
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Lowest and Highest Used Addresses	

These values give the full range of addresses that will be used by the program.	

For user programs, the lowest address will always be a page-aligned address and the 
highest address will a page-aligned address, minus 1.	

For kernel programs, the lowest and highest addresses used will not necessarily be 
page-aligned. These values are important for loading a kernel. The kernel program 
will be loaded by some form of “boot loader”. Both the boot loader and the kernel 
will reside in the kernel address space. This check is important so that the boot 
loader can make sure that the material it is loading will not overwrite the boot 
loader itself.	

Entry Point	

Every program must define a value for and export the symbol “_entry”. This value 
should be a legal address. Once loaded into memory by the kernel at runtime, 
execution will begin at this location. In the case of the kernel program, the boot 
loader program will end by jumping to this address.	

If the linker is compiling a kernel program (i.e., if the -k command line option is 
present), the linker will ensure that the value is within the kernel address space, i.e., 
0x0 … 0x3_FFFF_FFFF. Otherwise, the linker will ensure the address is within the 
user address space, i.e., 0x8_0000_0000 … 0xF_FFFF_FFFF.	

The linker will not ensure that the address is within an allocated page or segment. If 
this entry address is not an allocated address, the program will presumably signal an 
unrecoverable page fault or addressing error immediately upon execution at 
runtime, if it is a user program. If it is the kernel program, an illegal instruction 
exception will probably be signaled.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	191 284



Chapter 10: Executable File Format	

Separators	

The separators, which were discussed earlier, serve as a check to make sure the file 
format is followed. 	

List of Regions	

There will be zero or more regions listed after the header information.	

Kernel programs will have no regions; user programs will have one or more regions.	

For each region, several fields will appear.  The first field is “starting address”, which 
will never be negative. Following the regions, a value of 0xFFFF_FFFF_FFFF_FFFF 
(i.e., -1) will appear. The -1 value will mark the end of the list of regions.	

A region is a set of one or more pages, all of which are contiguous, i.e., placed 
sequentially in memory, one after the other, with no intervening gaps. The field 
called “number of pages” tells how large the region will be. You can multiply the 
number of pages by the page size to determine the size of the region in bytes.	

A page can be…	

	 • Either writable or read-only, and	
	 • Either executable or not executable	

The next two fields “Is Executable?” and “Is Writable?” tell how the pages should be 
marked before execution begins. All the pages in a region will have the same 
protection attributes. That is, all pages in the region are to be marked identically.	

The collection of pages in the region list describes how the kernel should set up the 
virtual address space before the program begins. (The kernel will also add 
additional pages, e.g., for stack and environment variables).	

Each region is ends with a separator.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	192 284



Chapter 10: Executable File Format	

List of Segments	

After the header list there will be a list of segments. Each segment is described by a 
block of fields that begins with “starting address” and ends with a separator.	

The starting address will never be negative. After the list of segment blocks, there 
will be a field with value -1 (i.e., 0xFFFF_FFFF_FFFF_FFFF). This -1 value will occur 
in place of the starting address of the next segment and is used to determine when 
the list of segment blocks ends.	

A segment (as discussed in the context of the executable file format) gives the actual 
data bytes that must be loaded into memory. Each segment contains a starting 
address, a length in bytes, and a block of data. The “starting address” tells where to 
place the data and the “length in bytes” tells how big the block of data is.	

Some segments are “zero-filled”, which means that they contain nothing but zeros. 
To avoid storing long strings of zeros in the file, the segment is marked “zero-filled” 
and the block of data is not given. The field “Is Zerofilled?” is used to determine 
whether (A) a data block is present and must be moved into memory, or (2) no data 
block is present and the memory is to be zero-ed instead.	

Every assembly language segment starts with a .begin pseudo-op and there is a one-
to-one correspondence between .begin pseudo-ops and segments.	

Every segment in an assembly language source file will result in one segment being 
placed into the executable file.	

Caveat  Segments in the assembly language file can actually have zero length. This is 
not an error, although a segment of zero length is meaningless and the product of 
sloppy programming. For a segment of zero size, nothing will be placed in the 
executable file.	

So, more precisely: For every assembly code segment of length greater than zero, 
there will be a segment in the executable file. Segments from the assembly file will 
never be broken apart and correspond to no more than one segment in the 
executable file.	
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Furthermore, the linker may also insert additional segments that do not correspond 
to any .begin in the assembly source file. These segments will always be zero-filled. 
These extra zero-filled zones result from and fill the gaps between the segments.	

Every byte in every page in every region included in the executable file will be given 
a value exactly once. Most bytes in the executable will come from the code and/or 
data specified in the assembly source file. However, any byte not explicitly specified 
is required (by the Blitz-64 design spec) to be initialized to zero.	

When the linker places the segments into pages, there may be gaps. These gaps can 
occur because the programmer specified “startaddr=“ values and these resulted in 
gaps between segments or resulted in unused space at the beginning of the page. 
Gaps will also occur whenever segments fail to completely fill a page.	

To ensure that these gaps are properly initialized, the linker creates additional zero-
filled segments that describe the areas that must be initialized at load-time.	

Commentary  Copying bytes and initializing bytes may perhaps be done by special 
DMA hardware outside the processor core. However, it is reasonable in many 
systems to perform these operations directly by machine code executing in the core.	

Let’s compare the cost of copying bytes versus zero-filling bytes.	

To copy bytes, a loop such as this may be required:	

# r1 = destination ptr
# r2 = source ptr
# r3 = stop value
loop:

load.d r4,0(r2)
store.d 0(r1),r4
addi r1,r1,8
addi r2,r2,8
blt r1,r3,loop

This example omits a lot of details, including loop setup and boundary conditions. It 
also assumes the addresses are properly aligned. Regardless, this seems to be the 
minimal loop needed for the bulk of a large copy operation.	
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On the other hand, the code to initialize a large block of memory might depend on a 
loop such as this:	

# r1 = destination ptr
# r3 = stop value
loop:

store.d 0(r1),r0
addi r1,r1,8
blt r1,r3,loop

The bottom line is that zero-filling a large region of memory will be substantially 
faster than copying bytes into that region. And this doesn’t even consider the cost of 
storing and reading in data from the executable file.	

So there is good reason to accommodate zero-filled segments.	

Modules and Symbols	

The executable file contains:	

	 • A list of all modules	
	 • A list of all symbols	

This information is not necessary to load and execute the program. Typically, the OS 
kernel will ignore and skip this information when a program is read and loaded into 
memory prior to execution.	

This information is provided for use in disassembling and debugging a program. 
After loading a program into memory, a debugging tool can go back to the executable 
file and retrieve this additional information for use in the debugging process.	

A single module is included in the file for every .o object module that was included 
by the linker in the executable file. The only information included is the name of the 
original .s source file from which the module came. This module information is 
included so that each symbol can be associated with the name of the file in which it 
was defined.	
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The executable file also includes a number of symbols. The information for each 
symbol includes both a reference to the module number (so the source filename in 
which this symbol was defined can be retrieved), along with the line number in that 
file.	

Every symbol that is used as a label is included in the executable file. Every symbol 
that is defined with a .equ pseudo-op is included.	

Each symbol has an associated value. The symbols do not appear in the executable 
file in any particular order. The are neither in alphabetical order nor in numerical 
order by value.	

Each symbol has a flag to indicate whether it is thought to be an address or not. This 
information is not precise. For example, consider this code:	

loc: .equ 0x800000000
…
movi r1,loc
loadb r7,0(r1)
…
loadb r7,loc

As you can see from the way it is used, the symbol “loc” is clearly an address. Yet 
“loc” will not be identified within the executable file as an address.	

In the following example, the symbols “var1” and “var2” will be identified as 
addresses in the executable file:	

var1: .word 0
var2: .equ var1+2

…
loadb r7,var1

When displaying out the contents of memory, a debugger tool is free to use the 
symbols information when displaying information. Although the following example 
is only suggestive, it shows how a debugger might display the contents of memory 
and the value of having information about symbolic addresses during debugging.	
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   800000b80:  a4
   800000b81:  02
var1:
   800000b82:  7c
   800000b83:  15
var2:
   800000b84:  8f
   800000b85:  44
   800000b86:  28
   800000b87:  05

The Debugger Info Section	

The initial portion of the executable file contains the information necessary to load 
and execute the program. The format of the initial section of the file was described 
above. After the initial executable section, the file includes a second section of data 
which is only used for error reporting and runtime debugging.	

The second section is called the debugger info section. During normal, error-free 
executions of the program, the debugger info will never be read from the file. 
However, when a runtime error occurs or whenever the programmer wants to use 
the debugger tool, the debugger section will be read from the file.	

The format of the debugging section is designed to promote simple and fast loading 
into memory. This is important because when an error occurs at runtime, the goal is 
to display an error message quickly.	

A typical error message might look like this:	

NULL POINTER EXCEPTION: Assignment stmt in “myFunction” in package 
“MyPack”, line N	

One purpose of the debugger info is to supply the underlined information:	

	 Function Name — The currently executing function	
	 Package Name — The source package name associated with this function	
	 Statement Type — The most relevant statement information	
	 Line Number — The line number of the statement	
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The error reporting will have only the current address (i.e., the PC) at which the 
error occurred. From this value, it must be possible to quickly determine the above 
information.	

The error reporting code may be a part of the failing program. That is, the error 
handling code may be linked and loaded with the failing program and the program 
may be responsible for printing the error message itself. Or, it may be that the OS 
kernel will produce the error message and the failing program will not execute any 
more instructions.	

In any case, the error reporting code will need the identity of the executable file, 
from which the debugger info section can be read. How that file is obtained is not 
discussed further here.	

Another purpose of the debugger info is for use by a debugger tool. In that scenario, 
the debugger tool will read in the debugger info from the executable file upon 
startup. The performance constraints are not as important in this scenario. The tool 
is free to read in the information and build complex internal data structures that it 
will use during the debugging session.	
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Layout of Debugging Information	

Here is the format of the debugger section: 	

bytes	 field description	

The following fields constitute the header... 	
	 4	 Number of modules (K); will be > 0	
	 4	 Number of Global blocks included below	
	 4	 Number of Function blocks included below	
	 4	 Number of Statement blocks included below	

The following fields are repeated once for every Module... 	
	 4	 Module number (1, 2, 3, …, K)	
	 	 	 Same module numbers as in executable section.	
	 	 	 These will be in numerical order.	
	 	 	 Every module will be represented here, even if there is no info.	
	 	 	 No info means that both strings are “\0”.	
	 4	 Package name: number of bytes (M; will be > 0)	
	 M	 Package name: the UTF-8 encoded characters (with terminating \0)	
	 4	 The second string: number of bytes (N; will be > 0)	
	 N	 The second string: the UTF-8 encoded characters (with terminating \0)	
	 4	 The .o object filename: number of bytes (P; will be > 0)	
	 P	 The .o object filename: the UTF-8 encoded characters (with term. \0)	
	 4	 The .s source filename: number of bytes (R; will be > 0)	
	 R	 The .s source filename: the UTF-8 encoded characters (with term. \0)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all Modules...	
	 4	 Zero to terminate (in hex: 0x00000000)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every Global…	
	 4	 Module number (will be > 0)	
	 4	 Source line number	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 8	 Address in memory	
	 	 	 (The globals are not in any order)	
	 4	 Global name: number of bytes (M); will be > 0	
	 M	 Global name: the UTF-8 encoded characters (with terminating \0)	
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After all Global entries...	
	 4	 -1 to terminate (in hex: 0xFFFFFFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every Function…	
	 4	 Source line number	
	 4	 Module number (will be > 0)	
	 4	 Frame size (not negative; 0 = leaf function)	
	 8	 Starting Address in memory	
	 	 	 (The functions are not in any order)	
	 8	 Beyond Address in memory	
	 4	 Function name: number of bytes (M); will be > 0	
	 M	 Function name: the UTF-8 encoded characters (with terminating \0)	

The following fields are repeated once for every Register Parameter…	
	 4	 Source line number ( >= 0 )	
	 1	 Register number (1 … 15)	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Parameter name: number of characters (M); will be > 0	
	 M	 Parameter name: the UTF-8 encoded chars (with terminating \0)	

After all Register Parameters…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every Local Variable…	
	 4	 Source line number ( >= 0 )	
	 4	 Offset from stack top	
	 1	 Type Code (One character code, e.g. ‘I’)	
	 4	 Variable name: number of bytes (M); will be > 0	
	 M	 Variable name: the UTF-8 encoded chars (with terminating \0)	

After all Local Variables…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	
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The following fields are repeated once for every Statement…	
	 4	 Source line number ( >= 0 )	
	 8	 Address in memory	

	 	 	 	 	 (The statements are not in any order)	
	 1	 Type Code (0=comment, 1=assign, …)	
If and only if type code = comment, the following will be present…	

	 4	 Comment String: number of bytes (M); will be > 0	
	 M	 Comment String: the UTF-8 encoded chars (with terminating \0)	

After all Statements…	
	 4	 -1 to terminate	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

After all Function entries...	
	 4	 -1 to terminate (in hex: 0xFFFFFFFF)	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	
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Quick Summary	

•	A “library object file” is a binary file.	
•	The library file has an extension of “.lib”.	
	 	 •	The library file is identified by its own magic number (“B64o_lib”).	
•	The library file begins with an index.	
•	Each index entry contains:	
	 — File name of original “.o” file	
	 — Where in the library file the module begins (Length is unnecessary.)	
	 — A list of all symbols exported by that module	
•	The index is followed by object modules.	
	 	 •	There will be one or more modules in the file.	
	 	 •	Each module has the same format as the object file it came from.	
•	Object modules may import symbols.	
	 	 •	There is no checking to make sure the imported symbols are defined.	
•	A library is created by the “createlib” tool.	
	 	 • The tool takes one or more object files as input.	
	 	 •	The tool adds all object modules to the newly created library file.	
•	The “createlib” tool will issue an error if the same symbol is exported by more 
than one object module.	
•	The linker tool will issue an error if the same symbol is exported in two different 
libraries or conflicts with an input object file.	
•	The “dumpobj” tool can be used to display the contents of an object library, as well 
as an object file.	

The Format of a Library File	

The library file has the following format. The file can be considered as series of 
fields. The length of the fields is given in the left-hand column.	
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bytes	 description	

The following fields constitute the header information... 	
	 8	 Magic number "B64o_lib" (in hex: 0x4236_346F_5F6C_6962)	
	 8	 Version Number (0x0000_0000_0000_0001)	
	 8	 Number of object modules	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following fields are repeated once for every object module... 	
	 4	 Name of original .o file: number of characters (M)	
	 M	 Name of original .o file: the ASCII characters (no terminating \0)	
	 8	 Offset into file of this object module	

Repeated once for every exported symbol in this module… 	
	 4 	 Symbol name: number of characters (N)	
	 N	 Symbol name: the ASCII characters (no terminating \0)	

To terminate the list of symbols… 	
	 4	 Zero	
	 8	 Separator “********” (in hex: 0x2A2A_2A2A_2A2A_2A2A)	

The following data blocks are repeated once for every object module... 	

	 X	 The object file contents (X bytes = size of original .o file)	

Introduction and Motivation for Libraries	

A typical program will use functions that have been written previously by someone 
else. Typically there exists a large collection of functions that are intended for re-use 
by many different, unrelated programs.	

For example, consider a collection of math-related functions, such as:	

	 sin, cos, sqrt, log, …	
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These functions are written once and used in many different programs. There may 
be hundreds of such math functions although a particular program will use, at most, 
only a few of them.	

When creating an executable file, we need a way to include only the functions that 
are needed, without including code that is not needed. The simple solution of 
including all math functions in every program is unacceptable. This would lead to 
very large executable files and constitute a waste of memory.	

A library is a single file containing the entire collection of all the functions. In this 
example, the “math library” is a single file containing all the math functions that are 
available for use. Since there are many math functions, this file may be quite large.	

First, let’s consider a program which does not use a library.	

After writing and assembling a program, a “.o” object file will be created. In fact, a 
large program may have several assembly source files, and several “.o” object files 
may be needed. The linker will combine all the object files and produce the 
executable file. The linker will include all the code and data bytes in all the object 
files, regardless of whether it is necessary or not.	

Next, we discuss how a library file is used.	

When linking the program, the linker tool may also consult a library file. Typically, 
the input to the linker consists of a list of object files, as well as a library file to 
consult.	

If the program makes use of some math function — say “cos” for example — the 
linker will include the code for that function in the executable. If a function is not 
used — for example, the “sqrt” function — the code for that function will not be 
included.	

The linker understands the format of the library file and will extract from it only the 
functions that are needed.	

So far, we have only mentioned a single library file. In our example, we discussed a 
library file containing all the math functions. There may be more than one library 
file. For example, a second library file might contain all the functions related to 
formatting output. A third library file might contain functions related to the 
graphical user interface.	
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The linker is capable of taking as input more than one library file. Whenever a 
function (such as “cos”) is used but not defined, the linker will search all the library 
files in order to locate a module containing the “cos” function and will include it in 
the executable.	
	 	

About the Library File	

Each “.o” object file contains all the data and code bytes specified in a single “.s” 
assembly source code file.	

Within that object file, there will typically be a number of symbols which are defined 
and exported. There may also be symbols which are imported and used, but not 
defined in the file. The object file may contain a single function or several functions 
and may contain data as well.	

(As mentioned in previous chapters in this document, the code and data within a 
single object file is broken into segments, but we will ignore segments in this 
discussion. )	

A library file consists of an index, followed by a number of “object modules”.	

An object module is nothing more than an object file: they have exactly the same 
format. We say object “module” instead of object “file” because — in this context — 
it is only a part of the library file, not a file on its own.	

Another way to say this is:	

A library file consists of a number of object files concatenated 
together, one after the other, with an index placed at the front. The 
size in bytes of the library file is exactly the sum of the sizes of all the 
object files that went into it, along with the size of the index.	

A library file is created with the “createlib” tool. The input to this tool is a list of 
all the object files that are to be placed into the library file. The tool reads all the 
object files, creates the index, then copies the index and all the object files into the 
newly created library file.	
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The index contains an entry for each object module in the library. The entry lists the 
symbols which are exported by that object module.	

For example, here is the command to create a library file. We assume that a number 
of files (such as “sin.s”, “cos.s”, “sqrt.s”, “log.s”, …) have been previously 
assembled. This command will create a new file, which is given a name following the 
“-o” output option.	

createlib sin.o cos.o sqrt.o log.o … -o math.lib

Now assume that a programmer has created a program consisting of two assembler 
source code files called “MyProg.s” and “MoreCode.s”, and wishes to create an 
executable file “MyExe”.	

asm MyProg.s	 Creates “MyProg.o”
asm MoreCode.s 	 Creates “MoreCode.o”

In order to create an executable file, the linker tool will be used to combine the 
material from “MyProg.o” and “MoreCode.o”. In addition, the library file called 
“math.lib” will be consulted, along with a second library file called 
“output.lib”, which contains functions related to output formatting.	

Here is the command to create the executable. The executable filename, “MyExe”, is 
given after the “-o” output option.	

link MyProg.o MoreCode.o math.lib output.lib -o MyExe

When the linker tool is used, it begins by reading the index for each and every 
library file that is to be consulted.	

Then the linker will read every “.o” file and include that material in the executable 
file. After this step, if there are symbols which have been imported but not exported 
by any of the object files, the linker will consult the library indexes.	

If the linker tool can locate an object module in one of the libraries that exports the 
needed symbol, the linker will include the material from that object module in the 
executable. If the linker cannot find any module that exports the needed symbol, it 
will issue an error message to the effect that “The symbol xxx is undefined; it is 
imported but not exported by any object file.”	
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The linker will continue to add modules from the library files until all symbols have 
been defined.	

An object module in a library may itself import a symbol. This will cause other object 
modules to be added to the growing executable file.	

The order in which the object files and library files are listed on the linker command 
line does not matter. The material from all object files will be added to the 
executable file.	

The linker is able to determine whether an input file is an object file or a library file. 
The linker ignores the “.o” and “.lib” extensions. These extensions are customary 
and useful for humans to know what is in the file, but the linker doesn’t use them to 
determine what sort of file it is. Instead, the linker looks at the file contents directly. 
Object files can be distinguished from library files because each type of file begins 
with a different “magic number”, which the linker uses to determine what the file 
contains.	

The first 8 bytes of the file will be:	

	 Magic number	 As ASCII	 Meaning	
0x4236_346F_626A_6374 B64objct	 This is an object file	

	 0x4236_346F_5F6C_6962 B64o_lib	 This is a library file	

Typically, each object module in a library file will contain a single function, but this 
doesn’t have to be the case. Next, we examine a more complex example in which a 
single object module may export several symbols and where an object module in a 
library can itself import a symbol from another object module.	

A single object module may contain several functions. Such an object module would 
presumably export several symbols, one for each function it contains. In other 
words, whenever a single module in a library file contains several functions, the 
name of each function would presumably be exported. Each function will begin with 
a labeled instruction and those labels would be exported.	

If any single symbol is used in the main program, it will cause the linker to pull in the 
entire module, with all the functions it includes, as well as all the symbols the 
module defines and exports. So, in the case where a single module contains several 
functions, the use of any one of those functions will cause all the functions in the 
module to be included in the executable.	
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Normally this behavior is not what is wanted, and the builder of the library will 
place each function in a separate module. Then, the inclusion of one function will not 
cause the other functions to be added, unless it specifically uses some other function 
(i.e., it imports the symbol naming some other function). 	

The object modules in a library need not contain only functions. They can contain 
arbitrary bytes.	

As an example of modules that contain data, consider the implementation of the 
“sin” and “cos” functions. One possible implementation is to include a table of pre-
computed values and compute the “sin” function by simply looking up the value in 
the table.	

The value of sin(x), where x ranges from 0° to 90°, is sufficient to capture the shape 
of the entire sin curve, since sin(x) for all other values of x can be computed using 
simple identities.	

A reasonable implementation is to include data points for (say) 10,000 values of x 
from 0° to 90°  in a look-up table. Of course there are an infinity of values between 0° 
to 90°, but 10,000 seems like a reasonable number to include. For intermediate 
values of x not included in the table, the algorithm will look up the values for the 
nearest two points and perform a linear extrapolation. Using this general approach, 
very precise values for sin can be computed.	

The shape of the cos curve is identical to the sin curve, only shifted in phase, and one 
implementation of cos might make use of the same table of values. The table is 
relatively large and we only want to include it in the executable file if either sin or 
cos is used.	

In this example, there will be three separate modules: (1) the sin function, (2) the 
cos function, and (3) the table of values, which is needed by both functions. The use 
of either sin or cos will cause the module containing the table to be loaded. If both 
sin and cos are used, then only one copy of the table will be loaded.	

This can be achieved as follows: The source file containing the table will export a 
single symbol, namely the label addressing the first element in the table. Both the 
source files for sin and cos will import this symbol.	
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[ This example was somewhat contrived. It seems more likely that the sin function 
and the table would be combined into a single module, while cos would be 
implemented as a function that adds 90° to x and then calls the sin function to do all 
the work. I believe a better design would be to put sin, cos, and the table all into a 
single module. ]	

When a library file is created, the createlib tool combines a number of object 
files into a single file. Each object file will export one or more symbols and may 
import symbols, as well.	

Each object module in a library must export at least one symbol, otherwise there is 
no way for that object module to be pulled in to the executable file. The createobj 
tool will check this, and issue an error message if necessary.	

Two object modules in a single library must not export the same symbol. The 
createlib tool will check this, and issue an error message if necessary. Likewise, 
during linking, the same symbol must not be exported multiple times, from different 
object files or from modules brought in from different libraries. The linker tool will 
check this, and issue an error message if necessary.	

However, we do allow an object module to export a symbol that is also exported 
from a module in a library file, as long as the library module is not brought in for 
inclusion in the executable file. The reason is this: It is possible that the library 
contains some function which just happens to have a common name that a 
programmer has coincidentally chosen for an unrelated meaning.	

For example, a program concerned with computing the energy efficiency of a wind 
turbine might reasonably define a function named “power” to compute the wattage 
of a turbine. Unknown to the programmer, the math library might contain a module 
which happens to export the symbol “power”, for example to compute the function 
xn. No error will be reported since there is no ambiguity. The programmer need not 
ever know that he/she happened to choose a symbol spelling that coincided with a 
symbol in the math library.	

Each object module in a library may import symbols. A symbol imported by one 
object module need not be exported by another module in that library. During 
linking, any imported symbol (regardless of whether imported by an object file or by 
an object module included from a library) must be exported exactly once by some 
other object file or object module. The linker tool will check this, and issue an error 
message if necessary.	
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The Version Number Field	

Following the magic number is a “version number”. This document describes 
“version 1” of the file format.	

Note  The object file format and the executable file format both contain an “ISA 
Architecture” field, in addition to the “version number”. There is no “ISA 
Architecture” field in the library file header, since our approach is not dependent on 
the ISA. A modification or change to the ISA should never require a change to the 
library header.	

However, note that the individual object modules each contain an “ISA Architecture” 
field, so any alteration to the architecture version will be represented in the library 
file, within the individual modules.	
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	 Format A-0	 <no operands>	
	 	 ILLEGAL Canonical form of illegal instruction
	 	 SYSRET PC ← csr_prev; csr_status ← csr_stat2
	 	 SLEEP1 Enter light sleep state
	 	 SLEEP2 Enter deep sleep state
	 	 RESTART Same as Power-On-Reset
	 	 DEBUG
	 	 BREAKPOINT
	 	 TLBCLEAR Invalidate all TLBs for current ASID	
	 	 FENCE 	

	 Format A-1	 Reg1	
	 	 CHECKB r1 Trap if reg not within -128 … +127
	 	 CHECKH r1 Trap if reg not within -32768 … +32767
	 	 CHECKW r1 Trap if reg not within 32 bit range

PUTSTAT r1 CSR_STATUS [9:3] ← Reg1 [9:3]
TLBFLUSH r1 Invalidate TLB for virtual address in Reg1

	 Format A-2	 RegD,Reg1	
	 	 ENDIANH r7,r1 Reorder bytes: 76543210 → 67452301
	 	 ENDIANW r7,r1 Reorder bytes: 76543210 → 45670123
	 	 ENDIAND r7,r1 Reorder bytes: 76543210 → 01234567
	 	 SEXTB r7,r1 Sign extend byte to 64 bits
	 	 SEXTH r7,r1 Sign extend 16 bits to 64 bits
	 	 SEXTW r7,r1 Sign extend 32 bits to 64 bits
	 	 FNEG r7,r1
	 	 FABS r7,r1
	 	 FSQRT r7,r1
	 	 FCLASS r7,r1 RegD ← classify(Reg1) || FLOAT_STATUS
	 	 FCVTFI r7,r1 Convert: floating-point ← int
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	 	 FCVTIF r7,r1 Convert: int ← floating-point

	 Format A-3	 RegD,Reg1,Reg2	
	 	 ADD r7,r1,r2
	 	 ADDOK r7,r1,r2
	 	 SUB r7,r1,r2
	 	 MUL r7,r1,r2
	 	 DIV r7,r1,r2
	 	 REM r7,r1,r2
	 	 AND r7,r1,r2
	 	 OR r7,r1,r2
	 	 XOR r7,r1,r2
	 	 SLL r7,r1,r2
	 	 SLA r7,r1,r2 Shift-left-arithmetic; checks for overflow
	 	 SRL r7,r1,r2
	 	 SRA r7,r1,r2
	 	 ROTR r7,r1,r2 Rotate right; no overflow check
	 	 TESTEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0
	 	 TESTNE r7,r1,r2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0
	 	 TESTLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0
	 	 TESTLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0
	 	 FEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)
	 	 FLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)
	 	 FLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)
	 	 FADD r7,r1,r2
	 	 FSUB r7,r1,r2
	 	 FMUL r7,r1,r2
	 	 FDIV r7,r1,r2
	 	 FMIN r7,r1,r2
	 	 FMAX r7,r1,r2

	 Format A-4	 RegD,Reg1,Reg2,Reg3	
	 	 ADD3 	 r7,r1,r2,r3	 Reg3 ← Reg1+Reg2+Reg3 (unsigned)	
	 	 ALIGNH 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGNW 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGND 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 INJECT1H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3 	
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	 	 INJECT2H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1W 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2W	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 FMADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3
	 	 FNMADD r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) + Reg3
	 	 FMSUB r7,r1,r2,r3 RegD ← (Reg1 × Reg2) - Reg3
	 	 FNMSUB r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) - Reg3	
	 	 MULADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3	
	 	 MULADDU r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	
	 	 INDEX0 r7,r1,r2,r3 Reg1=arrayPtr, Reg2=header, Reg3=index	
	 	 INDEX1 r7,r1,r2,r3 .   RegD ← Reg1 + 8 + (Reg3 * scale)	
	 	 INDEX2 r7,r1,r2,r3 .   Reg2=header=[ArrayMAX||ArrayCURR]	
	 	 INDEX4 r7,r1,r2,r3 .   Trap if (Reg3 < 0) or (Reg3 ≥ ArrayCURR)	
	 	 INDEX8 r7,r1,r2,r3 .                          or (ArrayMAX = 0)	
	 	 INDEX16 r7,r1,r2,r3 .	
	 	 INDEX24 r7,r1,r2,r3 .	
	 	 INDEX32 r7,r1,r2,r3 .	
	 	 CAS r7,r1,r2,r3 Compare and Swap: If *r1=r2 then *r1←r3	

	 Format A-5	 Reg1,Reg2	
	 	 <no longer used>	

	 Format A-6	 Reg2	
	 	 <no longer used>	

	 Format A-7	 RegD,Reg1,Reg2	
	 	 CSRSWAP r7,csr,r2 Reg1 encodes CSR; RegD ← CSR; CSR ← Reg2 	

	 Format A-8	 RegD,Reg1	
	 	 CSRREAD r7,csr Reg1 encodes CSR; RegD ← CSR; 	

	 Format A-9	 RegD	
	 	 GETSTAT r7,csr RegD ← CSR_STATUS & 0x0000…03f8 	
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Format B-1	 RegD,Reg1,immed-16	
	 	 ADDI r7,r1,0x1234
	 	 ANDI r7,r1,0x1234
	 	 ORI r7,r1,0x1234
	 	 XORI r7,r1,0x1234
	 	 TESTEQI r7,r1,0x1234 RegD ← (Reg1=immed) ? 1 : 0
	 	 TESTNEI r7,r1,0x1234 RegD ← (Reg1≠immed) ? 1 : 0
	 	 TESTLTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTLEI r7,r1,0x1234 RegD ← (Reg1≤immed) ? 1 : 0
	 	 TESTGTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTGEI r7,r1,0x1234 RegD ← (Reg1≥ immed) ? 1 : 0
	 	 UPPER16 r7,r1,0x1234 RegD ← (immed<<16) + Reg1
	 	 SHIFT16 r7,r1,0x1234 RegD ← (Reg1+immed) << 16	
	 	 CONTROL r7,r1,0x1234
	 	 CONTROLU r7,r1,0x1234

ENTERFUN sp,sp,32	 	 Push frame onto stack, save lr in frame 	11

EXITFUN sp,sp,32	 	 Retrieve lr, pop frame, and return	

	 Format B-2	 RegD,immed-16(Reg1)	
	 	 LOAD.B r7,offset(r1) Value is sign-extended to 64 bits
	 	 LOAD.H r7,offset(r1) . May cause unaligned exception
	 	 LOAD.W r7,offset(r1) . No overflow check on addr calculation
	 	 LOAD.D r7,offset(r1)
	 	 JALR lr,offset(r1) RegD ← return addr; Target ← offset+Reg1	

	 Format B-3	 RegD,Reg1,immed-3	
	 	 CHECKADDR r7,r1,5 Reg1 = virt addr; RegD ← except. code or 0

	 Format B-4	 immed-10	
	 	 SYSCALL 123 immed-10 selects one of 1,024 syscalls	

 For ENTERFUN and EXITFUN, any source and destination registers can be used, but these 11

instructions only make sense for sp.
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	 Format B-5	 RegD,Reg1,immed-6	
	 	 SLLI r7,r1,5
	 	 SLAI r7,r1,5 Shift-left-arithmetic checks for overflow
	 	 SRLI r7,r1,5
	 	 SRAI r7,r1,5
	 	 ROTRI r7,r1,5 Rotate right; no overflow check	

	 Format B-6	 Reg1,immed-16	
	 	 CSRSET csr,0x1234 Reg1 encodes CSR; Set selected bits in CSR
	 	 CSRCLR csr,0x1234 Reg1 encodes CSR; Clear selected bits in CSR

	 Format C-1	 immed-16(Reg1),Reg2	
	 	 STORE.B offset(r1),r2 Upper bits in reg are ignored
	 	 STORE.H offset(r1),r2 . May cause unaligned exception
	 	 STORE.W offset(r1),r2 . No overflow check on addr calculation
	 	 STORE.D offset(r1),r2

	 Format C-2	 Reg1,Reg2,immed-16	
	 	 B.EQ r1,r2,MyLabel Branch if Reg1=Reg2; Offset is PC-relative
	 	 B.NE r1,r2,MyLabel Branch if Reg1≠Reg2; Offset is PC-relative
	 	 B.LT r1,r2,MyLabel Branch if Reg1<Reg2; Offset is PC-relative
	 	 B.LE r1,r2,MyLabel Branch if Reg1≤Reg2; Offset is PC-relative	

	 Format D-1	 RegD,immed-20	
	 	 UPPER20 r7,MyLabel RegD ← (immed<<16)
	 	 AUIPC r7,MyLabel RegD ← (immed<<16) + PC
	 	 ADDPC r7,MyLabel RegD ← immed+PC	
	 	 JAL lr,MyLabel RegD ← return addr ; Target ← PC+immed	
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Quick Summary	

• The following tools are discussed:	
	 asm	 Assembler	
	 link	 Linker	
	 createlib	 Tool to create library files	
	 dumpobj	 Tool to display object files	
	 hexdump	 Tool to display contents of binary files	
• For each tool, the command line options are described.	

The Assember Tool	

The assembler tool is a program named “asm”. A typical use is:	

asm hello.s

A particularly useful option is “-l”, which will produce a listing. This is useful in 
seeing exactly what machine codes are being produced by the assembler.	

asm hello.s -l

The following command line options may be given in any order:	

filename	

The input source will come from this file. (Normally this file will end with  
“.s”.)  If an input file is not given on the command line, the assembly source 
code program will come from stdin. Only one input source file is allowed.	
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-o filename

(oh) If there are no errors, an object file will be created. The -o option can be 
used to give the object file a specific name. If this option is not used, then the 
input source file must be named on the command line (the source must not 
come from stdin). If -o is not used, the name of the object file will be 
computed from the name of the input file by removing the  “.s” extension, if 
any, and appending  “.o”. For example: 	

test.s → test.o
foo → foo.o 

-h

Print information describing the command line options, which is roughly 
identical to the information in this section. All other options are ignored and 
the tool terminates immediately.	

-l

(el) Print a listing on stdout. The listing shows the entire source file and, for 
every line, indicates what bytes have been produced. The listing is best 
viewed in a fixed-width font.	

-w

This option will suppress all warning messages.	

-z

Wait for the linker. Defer the translation of some synthetics instructions to the 
linker, which may find slightly shorter translations in a few rare cases.	

This option will force the assembler to defer to the linker all synthetic 
translations that are not guaranteed to be optimal.	

This primarily concerns a JUMP/CALL to an absolute value that the assembler 
determines can be done in two instructions. However, if the linker happens to 
place the segment containing the JUMP/CALL close to the segment containing 
the target address, it might be possible for the linker to translate the JUMP/
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CALL using a single PC-relative JAL instruction. This option forces the 
assembler to only translate JUMP/CALL instructions when it can be done in 
one instruction, or when the target address is not a valid memory address.	

A similar situation occurs with a MOVI that is moving an absolute value in the 
range 0x0_0000_8000 ... 0xF_FFFF_FFFF into a register. Such an instruction is 
likely to be loading the address of a JUMP/CALL target and will require two 
instructions if done by the assembler. The linker may be able to translate the 
MOVI with a single ADDPC instruction. This option will prevent the assembler 
from translating the MOVI using two instructions.	

This situation can also be triggered for a segment which is not assigned a 
value for “gp=“. Since the assembler doesn’t know whether this segment will 
be in kernel space or in user space, it cannot assigned the default. It is 
possible that the linker will assign a default value that will make shorter 
instruction sequences for MOVI, JUMP, CALL, Bxx, LOADx, and STOREx 
instructions usable.	

-zw

This option is related to the -z option. This option will cause warnings to be 
generated whenever the assembler is synthesizing an instruction in a way 
that might not be optimal.	

-s

Print the symbol table on stdout. This listing lists each symbol in the source 
file and, for each, shows its attributes, including its value (if known), whether 
the symbol is imported or exported, and which line the symbol was defined 
on. The output should be viewed in a fixed-width font.	

-nodebug

By default, the assembler adds debugging info to the .o output file. This 
option suppresses this; if present no debugging information will be put into 
the output file. This option causes the assembler to ignore the debugging 
pseudo-ops, namely:	

	 .sourcefile	
	 .function	
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	 .endfunction	
	 .global	
	 .local	
	 .regparm	
	 .stmt	
	 .comment	

-d

Print internal assembler info (for debugging asm.c). This option may become 
disabled in the future. Generally speaking, this option will cause the 
“instruction list” to be printed. This is the internal representation of all 
instructions after the source file has been read in and parsed.	

This option will also cause .skip instructions with extremely large values to be 
treated differently. Such instructions occur in the test files; with this option 
long runs of 0x00 will not be written out to the object file.	

-d2

Print internal assembler info (for debugging asm.c). This option may become 
disabled in the future. Generally speaking, this option will print info tracing 
the ProcessSynthetics algorithm.	

The Linker Tool	

The linker tool is a program named “link”. A simple use is:	

link hello.o -o hello

At least one object file (such as “hello.o”) is required.	

The executable file that is to be produced (e.g., “hello”) must also be specified. The “-
o” option must be followed by the filename of the executable.	

A more typical example includes several object files and libraries:	
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link  hello.o  fred.o  myLib.lib  math.lib  -o hello

The following command line options may be given in any order:	

-h

Print information describing the command line options, which is roughly 
identical to the information in this section. All other options are ignored and 
the tool terminates immediately.	

filename	

One or more input files must be specified on the command line.  Each is 
assumed to be either a “.o” object file or a “.lib” library file. They may be given 
in any order. There must be at least one object file specified.	

-o filename

The name of the file to be created is required. If the file already exists, it will 
be overwritten.	

-k

If this option is present, all code and data segments will be placed in the 
kernel address space. Otherwise, they will be placed in the user address 
space.	
	 	 From	 To	
	 Kernel Address Region:	 0x0_0000_0000 0x3_FFFF_FFFF	
	 User Address Region:	 0x8_0000_0000 0xF_FFFF_FFFF	

-s

This option causes the linker to print out the internal symbol table and other 
information about the linking process. The output should be viewed in a 
fixed-width font.	

-s1

This option causes the linker to print out an overview of memory usage for 
the resulting executable file.	
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-s2

The linker will add information to the executable file that is intended only to 
be used by a debugger tool. This option will print out this information in 
human-readable form. This option is independent of option -s; they each 
print different information. The output should be viewed in a fixed-width 
font.	

-w

This option will suppress all warning messages. It is equivalent to “-w1 -w2 
…”. If -w is used, the others (-w1, -w2, …) must not be used.	

-w1

When synthesizing some instructions (e.g., JUMP, LOADx, STOREx, Bxx), the 
linker will compute the target address. If the value is not within the legal 36 
bit range, (i.e., not within 0x0 … 0xF_FFFF_FFFF) the linker will print a 
warning and ignore the upper 28 bits.	

The -w1 option causes the linker to suppress this warning.	

-w2

When synthesizing some instructions, the linker may occasionally insert a 
NOP instruction after the machine code translation. If this occurs, a warning 
will be printed.	

The -w2 option causes the linker to suppress this warning.	

The insertion of a NOP is a side-effect of the algorithm and does not indicate 
an error. It can occur when a forward JUMP initially required two machine 
code instructions; later, the translation of other instructions can move the 
JUMP forward, suddenly making a single machine code instruction adequate. 
To ensure algorithm termination, the translations can only grow, never 
shrink. The NOP should be harmless, aside from a small impact on execution 
speed.	
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-w3

Normally variables should be placed in a segment marked “writable, but not 
executable”. Code should be placed in a segment marked “executable, but not 
writable”. Read-only constants can go into either a code segment marked 
“executable, but not writable” or a segment marked “not executable and not 
writable.”	

A segment marked “executable and writable” is unusual and is not 
recommended. Programs that are able to modify themselves make life much 
easier for malware. Such segments are discouraged and a warning will be 
generated if the linker encounters such a segment.	

The -w3 option causes the linker to suppress this warning.	

-shownop

Prints a warning whenever a NOP is inserted..	

-dXXX

Options of this form (such as -d and -d4) were used during debugging of the 
linker tool itself. They cause the printing of various internal data structures. 
These options are not useful to users and may be disabled in the future. For 
details, consult the source code of the linker tool.	

The “createlib” Tool	

To create a new library file, a tool named “createlib” is used. For example:	

createlib sin.o cos2.o sqrt.o log.o -o math.lib

At least one object file is required and there are typically many.	

The “-o” option must be followed by the filename of the output file. It is required.	

The following command line options may be given in any order:	
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-h

Print information describing the command line options, which is roughly 
identical to the information in this section. All other options are ignored and 
the tool terminates immediately.	

filename	

One or more input files must be specified on the command line.  Each is 
assumed to be a “.o” object file. There must be at least one object file 
specified, and their order is irrelevant.	

-o filename

The name of the file to be created is required. If the file already exists, it will 
be overwritten. It will typically end with “.lib” but this is not required.	

-s

Print the symbol table on stdout. A listing of each exported symbol and the 
module that exported it is printed.	

The “dumpobj” Tool	

The “dumpobj” tool will read a file and print its contents in a human-readable form 
on stdout. It can handle the following types of files:	

	 Object (.o) files	
	 Library (.lib) files	
	 Executable (a.out) files	
	 Load-and-go files	

The dumpobj tool understands the formats used in these files. It will read a file and 
display the information in a form that is appropriate for the file type. This tool will 
also do some error checking on the file and, if problems in the file are encountered, 
the tool will print an error message and terminate. This tool will not modify any 
files.	
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The following command line options may be given in any order:	

filename	

The input source will come from this file. If an input file is not given on the 
command line, the input will come from stdin.  Only one input file is allowed.	

-h

Print information describing the command line options, which is roughly 
identical to the information in this section. All other options are ignored and 
the tool terminates immediately.	

-v

The “v” stands for “verbose”. Header information, symbol information, and 
patch information is always printed. This option controls whether the data in 
the segments is printed. If present, the instructions and data are also printed.	

The “hexdump” Tool	

The “hexdump” tool will read a file and print its contents on stdout. It can handle 
any kind of file. The file contents will be printed both in hex and interpreted as 
ASCII.	

For example, the following command:	

% hexdump hexdump.c

will produce this output:	

000000000:  2F2F 2054  6865 2042  6C69 747A  2D36 3420    // The Blitz-64 
000000010:  2268 6578  6475 6D70  2220 546F  6F6C 0A2F    "hexdump" Tool./
000000020:  2F0A 2F2F  2062 7920  4861 7272  7920 482E    /.// by Harry H.
000000030:  2050 6F72  7465 7220  4949 490A  2F2F 2043     Porter III.// C
000000040:  6F70 7972  6967 6874  2032 3031  380A 2F2F    opyright 2018.//
000000050:  0A2F 2F20  5468 6973  2070 726F  6772 616D    .// This program
000000060:  2072 6561  6473 2061  2066 696C  6520 616E     reads a file an

...
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This tool will not modify any files.	

If the file happens to be a properly formatted UTF-8 file, then all ASCII characters 
will be displayed, but all remaining Unicode characters will be replaced with dots on 
the righthand side. This tool’s output is purely ASCII.	

For example, a file containing these characters:	

	 café, naïve, x←(2÷3)

will be displayed as:	

000000000:  6361 66C3  A92C 206E  61C3 AF76  652C 2078    caf.., na..ve, x
000000010:  E286 9028  32C3 B733  29                      ...(2..3)

The following command line options may be given in any order:	

filename	

The input will come from this file.  If a file is not given on the command line, 
the input will come from stdin.  Only one input file is allowed.	

-h

Print information describing the command line options, which is roughly 
identical to the information in this section. All other options are ignored and 
the tool terminates immediately.	
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Introduction	

We next describe the assembler algorithm that translates the remaining synthetic 
instructions into machine code instructions. Some synthetic instructions cannot be 
translated until link time and these will remain untranslated. Those that can be 
translated will be replaced with the correct machine instruction sequences.	

ProcessSynthetics	

The function in the assembler (i.e., in asm.c) which uses this algorithm is called 
“ProcessSynthetics”.	

Before this function is called, the simpler synthetic instructions will have been dealt 
with. Each remaining synthetic instructions will be one of	

	 Format-S1	
	 Format-S2	
	 Format-S3	
	 Format-S4	
	 Format-S5	
	 Format-S6	
	 Format-S7	

For each of these, the translation has a variable length. This means the synthetic 
instruction may be expanded into several machine instructions. Possible 
translations are:	
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	 4 bytes	 1 machine instruction	
	 8 bytes	 2 machine instructions	
	 12 bytes	 3 machine instructions	
	 16 bytes	 4 machine instructions	

The function that performs an individual translation is called 
“SynthesizeInstruction”. It takes two arguments:	

	 • Instruction Pointer	
	 • wantAction	

Each instruction is represented with an instance of “struct Instruction”. All 
instructions in the source code file are kept in a single linked list of these 
Instruction objects.	

The “instruction pointer” points to an Instruction object in the linked list of 
instructions. If translation is possible, this function will replace a single synthetic 
instruction by one or more machine instructions.	

The “wantAction” parameter is a boolean. If TRUE, the translation will take place 
and the instruction list will be modified. If FALSE, then no modifications will occur; 
This happens when the function is being called to determine if synthesis could take 
place, given the current conditions, and if so, how big the translation would be.	

The SynthesizeInstruction function will return an integer indicating success or 
failure, and the size of the translation.	

	 -1	 FAILURE: 	There was a problem and the translation could not	
	 	 	 be done.	
	 4, 8, 12, 16	 SUCCESS:	 The size of the translation, in bytes.	
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Each instruction is represented with one Instruction object. The following fields on 
Instruction are used by this algorithm:	

	 actualSize 	 The number of bytes required for this synthetic instruction	
	 	 	 Could be 4,8,12,16. -1 means variable/unknown/linker	
	 	 	 required.	
	 maximumSize 	 The maximum number of bytes required for this synthetic	
	 	 	 instruction. Could be 4,8,12,16. Set once and then used once	
	 	 	 we determine we can’t do anything with this instruction.	
	 myLC	 The offset of this instruction from the beginning of	
	 	 	 this domain.	
	 myDomain 	 Which domain this instruction is in.	

A “domain” is a sequence of instructions. All instructions in the sequence have an 
exact, known size, except possibly the last instruction. Relative offsets within a single 
domain can be computed with certainty.	

In general, the assembler does not know where in memory the linker will place each 
segment.	

The .align instruction presents a unique challenge. Since the assembler doesn’t 
know exactly where in memory the segment will be placed, it cannot determine how 
many bytes will be inserted by the linker for each .align instruction. Thus, .align 
instructions are like synthetic instructions that must be handled by the linker.	

[ Prior to this algorithm, all “.align 2” and “.align 4” instructions were replaced with 
“.skip 1/2/3” instructions, so they are gone. All remaining .align instructions — 
that is, 8, 16, 32, or page — are treated as unknowable by this algorithm. Even if a 
“startaddr=” is given for the segment, it will not be used for .align instructions, even 
though we could, in theory, determine exactly how many bytes some .align 
instructions would insert. ]	

The last instruction in a domain will be either a synthetic instruction whose size we 
cannot determine, an .align instruction, or the last instruction in a segment. 
Every .begin instruction will cause a new domain to be started. Likewise, a new 
domain will be started directly after a synthetic instruction whose size we cannot 
determine, and after every .align instruction.	

Consider a synthetic instruction within some domain. The assembler can compute 
the exact offset from that synthetic instruction to another location, as long as that 
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location is in that domain. If the target location is in another domain, then the 
assembler cannot determine the relative distance between them. (This is because 
they are either in different segments or are separated by an .align or synthetic 
instruction whose size we cannot determine.)	

Domains are identified by numbers and numbers are assigned sequentially so it is 
easy to determine whether two domains are equal.	

If the exact starting locations of segments are given in the .begin instructions (using 
“startaddr=“), then it might be possible to deduce the relative offset between two 
locations in different segments. However, this algorithm will not handle relative 
offsets between segments, even if they could, in theory, sometimes be inferred.	

First Phase	

In the first phase of the algorithm, we make the assumption that every synthetic 
instruction will be translated. The best case assumption is that each segment will be 
reduced to a single domain.	

In this case, some synthetics will simply be impossible to translate, because they rely 
on imported symbols. In the first phase, we will identify these synthetic instructions 
and immediately give up on them. We will assume these will take the maximum size, 
and we will use a negative number (-4, -8, -12, or -16) to indicate that they cannot be 
translated.	

However, for the remainder of the synthetic instructions, there is some hope that we 
will ultimately be able to translate them. So we will begin by assuming those 
synthetic instructions can be translated with only one (4 byte) instruction.	
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	 // Initialize domain and myLC...	
	 LOOP thru the instruction list...	
	 	 Place each segment into a single domain	
	 	 Set “actualSize"	
	 	 	 For machine instructions, use the exact size (i.e., 4 bytes)	
	 	 	 For synthetics and .align, use the maximum possible sizes	
	 	 Also set "myDomain" and “myLC” for each instruction.	
	 	 For symbols used as labels, set their “domain” and “offset” fields.	

	 // Determine which synthetics are simply not translatable...	
	 LOOP thru the instruction list; look only at Format S instructions.	
	 	 Call "SynthesizeInstruction" — with arg “wantAction” = NO	
	 	 	 Get a size for this instruction, or -1 if not synthesizable.	
	 	 	 If we get a number, save it in "maximumSize", for later.	
	 	 	 Otherwise if we get -1, set "actualSize" to -(maxSize for this	
	 	 	 	 type of instruction)	
	 	 	 If size is a number, set "actualSize" to 4, the minimum.	

The reason we must do it this way is shown by the following example:	

1 .import Undef
2 L3:
3 jump Undef # Unknown size - Can't synthesize
4 L4:
5 jump L3 # Size 4, but can't synthesize
6 L5:
7 jump L4 # Size 4, can synthesize

The jump on line 3 cannot be synthesized. However, it can be 8 bytes at most, which 
is the maximum size for any JUMP instruction. Since the distance from the JUMP on 
line 5 to “L3” is small, the assembler can determine that the JUMP on line 5 will 
require exactly 4 bytes. But the assembler can’t know exactly what that distance is, 
so it can’t synthesize the JUMP on line 5. Since the assembler knows the size of the 
JUMP on line 5, if not the exact value, it can synthesize the JUMP on line 7.	

The information we pass to the linker is:	

	 The linker must synthesize the JUMPS on lines 3 and 5.	
	 	 The jump on line 3 can be any size.	
	 	 The jump on line 5 will take exactly 4 bytes.	
	 The jump on line 7 has already been synthesized; the linker will ignore it.	
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Second Phase: Relaxation	

The second phase of the algorithm is essentially a “relaxation algorithm”. We have 
previously set the size of every synthetic instruction that might be synthesizable to 4 
bytes. Each “slot” is set to the minimum size and will gradually be enlarged until 
every slot is large enough to accommodate the translation.	

First, we go through and assign addresses to all instructions and labels. We also re-
assign domains.	

Then, given the assignment of addresses and domains, we determine which 
synthetic instructions can actually be synthesized in the amount of space we have 
set aside for them. In some cases, the 4 bytes will be enough. However, for some, we 
may need more than 4 bytes. If so, we increase the number of bytes to accommodate 
the translation.	

Then, if any synthetic instruction required more bytes than we had initially counted 
on, we need to repeat. We keep repeating until nothing further changes.	
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	 somethingChanged = TRUE	
	 LOOP WHILE (somethingChanged)	
	 	 somethingChanged = FALSE	

	 	 // Re-assign LCs...	
	 	 LOOP thru instruction list	
	 	 	 Set “myLC” based on “actualSize”	
	 	 	 Set “myDomain”	
	 	 	 	 For .begin and .align, start a new domain	
	 	 	 	 Otherwise, create one domain per segment  	
	 	 	 For symbols used as labels, set their “domain” and “offset”	

	 	 // Check that "ActualSize" is adequate and enlarge as necessary...	
	 	 LOOP thru instruction list; look only at format S instructions.	
	 	 	 If “actualSize” > 0	
	 	 	 	 Call SynthesizeInstruction() — with arg “wantAction” = NO	
	 	 	 	 If returned value  ==  -1	
	 	 	 	 	 It was synthesizable before, but now it can't be.	
	 	 	 	 	 Set “actualSize” = saved “maximumSize”.	
	 	 	 If newSize > “actualSize”	
	 	 	 	 “actualSize” = newSize	
	 	 	 	 somethingChanged = TRUE	
	 END WHILE LOOP	

[ Since we are enlarging the slot sizes on each iteration and there is a maximum 
possible slot size (12 bytes), this repeat-until-no-changes loop will terminate. Most 
likely, the first iteration will determine the sizes we need and a few synthetic 
instruction slots will be enlarged to whatever is actually needed. In the second 
iteration, there will likely be no changes and the looping will be done. However, it is 
possible that the growth of one slot will have the consequence of moving two other 
things a little farther apart, requiring some other instruction that previously 
required 4 bytes to suddenly pass a threshold and require 8 bytes. In some 
pathological case, there might several iterations. ]	

In the fourth phase, the algorithm will again run through the instructions and 
assign locations to everything. Then it will loop through the instructions and 
actually perform the translations. We have already determined how many bytes are 
required, so we know when the translation can be done and how big it will be.	
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	 // Assign accurate LCs...	
	 LOOP thru instruction list	
	 	 Set “myLC” based on “actualSize”	
	 	 Set “myDomain”	
	 	 	 For .begin and .align, start a new domain	
	 	 	 If “actualSize” < 0, then start a new domain	
	 	 For symbols used as labels, set their “domain” and “offset”	

	 // Perform the transformations...	
	 LOOP thru instruction list; look only at format S.	
	 	 If “actualSize” > 0	
	 	 	 Call SynthesizeInstruction() — with arg “wantAction” = YES	
	 	 	 If returned size == -1	
	 	 	 	 Ignore; the target moved to a different domain	
	 	 	 If returned size ≠ “actualSize”	
	 	 	 	 ProgramLogicError	

In the final step, we may make one last pass through the instructions to set the 
addresses and sizes so everything is consistent. In particular, we allocate zero bytes 
for all .align instructions (which the linker may increase) and 4 bytes for every 
remaining untranslated synthetic instruction (which the linker may increase).	

	 // Finalize the “actualSize” and “LC” values…	
	 LOOP thru the instruction list	
	 	 For remaining synthetics, set “actualSize” to 4 bytes.	
	 	 For .align, set “actualSize” to 0 bytes.	
	 	 Set “myLC” based on “actualSize”	

BUGS AND PROBLEMS: We still have some issues that need attention.	

After this algorithm, actualSize will be…	
	 Negative (-4, -8, -12, -16)… indicates a mandatory size	
	 4 = no assumptions about size were made.	

In the code, we consider expanding a synthetic instruction into a larger sequence. 
Right now, the code in SynthesizeInstruction always assumes the slot size is 4. It 
adjusts the offset if the target is BEFORE the synthetic but not AFTER. This is 
because it will be inserting an instruction.	
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Furthermore, it determines whether the adjustment is needed by looking to see if 
the target is in the current or following domain. We have changed things so that the 
target is always in the same domain.	

It’s possible that the slot size is 8 and is being enlarged to 12 (or from 12 to 16). 
Furthermore, the test about whether the adjustment is needed is wrong.	
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Quick Summary	

• A specific implementation of the linker tool is described.	
• The code in the C program “link.c” is documented.	
• This appendix can safely be ignored unless there is a bug in the linker.	
• This appendix may be separated out into a separate document in the future.	

Introduction	

The linker tool is a C program named “link.c” and the executable is named “link”. 
The C code includes some standard C libraries and some additional C code from 
BlitzSupport.c. The command line parameters are documented elsewhere. The 
program terminates with a standard Unix/Linux error code (EXIT_FAILURE, 
EXIT_SUCCESS).	

Error messages and warnings go to the stderr output. Additional information may 
be printed for error and warning messages and this goes to stdout. Several 
command line options (such as -s and the various -d debugging options) print 
output which goes to stdout.	

The following files contain all the linker code:	

	 link.c	
	 BlitzSupport.c	
	 CheckHostCompatibility.c	

There are no .h header files, which is somewhat atypical of Linux/Unix coding style.	

The file BlitzSupport contains a number of functions that are used by the linker, as 
well as other tools in the Blitz project, such as the assembler and the emulator.	
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The CheckHostCompatibility.c file contains a function named 
CheckHostCompatibility which tries to ensure that all assumptions about the host 
(e.g., byte-order, word size, and C “implementation dependencies”) are as expected. 
This function is called once at startup and any problems cause an immediate halt.	

In addition, the following well-known Linux/Unix “includes” are used:	

#include <stdlib.h>	
#include <stdio.h>	
#include <stdarg.h>	
#include <string.h>	
#include <errno.h>	

The linker primarily relies on the following “C” types, as well as pointers, arrays, and 
structs.	

int	 32 signed integers	
int64_t	 64 bit signed integers	
char	 bytes: 8 bit quantities	
FILE *	 For file I/O	

For boolean values, we use type int and use 0 and 1 for FALSE and TRUE.	

All sizes and lengths are in terms of bytes, and never in terms of words or 
doublewords.	

I have a tendency to avoid defining constants with #define and tend to specify the 
value directly. I do this because I have lost too many debugging hours because I 
made incorrect assumptions about the value of a “constant”.	

Linux/Unix system functions that are most heavily used are:	

calloc	
free	
fopen	
fclose	
fread	
fwrite	
fseek	
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feof	
perror	
errno (a variable)	
exit	
printf	
fprintf	

The following functions are also used in other Blitz tools:	

strlen	
strcmp	
fscanf	
putchar	
fread	
fwrite	

The most common formatting codes used in printf are:	

%d	
%lld	
%x	
%llx	
%s	
%c	

The program is compiled with a make file named “makefile”, which contains 
roughly these lines:	

CheckHostCompatibility1.s: CheckHostCompatibility.c
gcc -g -std=c99 -Wall -DBLITZ_HOST_IS_LITTLE_ENDIAN \

-DWithoutOpt CheckHostCompatibility.c \
-S -o CheckHostCompatibility1.s

CheckHostCompatibility2.s: CheckHostCompatibility.c
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \

-DWithOpt CheckHostCompatibility.c -S \
-o CheckHostCompatibility2.s

link: link.c BlitzSupport.c checkHostCompatibility1.s \
checkHostCompatibility2.s

gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \
-lm link.c checkHostCompatibility1.s \

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	237 284



Appendix 4: The Linker Algorithm	

checkHostCompatibility2.s -o link

Error Handling	

The program often performs internal consistency checks and calls function 
ProgramLogicError if anything is wrong. The program also performs checks to 
make sure the input is well formed and error-free. If anything is amiss, it calls one of 
the functions: FatalError, FatalErrorInFile, or FatalErrorInModule. All of these 
functions print a message and terminate the program immediately.	

Other types of errors are not fatal and the linker will keep going. In these cases, it 
prints an error message to stderr. There is a counter named errorCount which is 
incremented. Later, this counter is used to determine whether the program should 
return EXIT_FAILURE or EXIT_SUCCESS. The program also prints warning messages 
and there is a counter named warningCount which is incremented every time a 
warning is printed.	

At certain moments, the program will call a function named CheckForAbort, which 
will take a look at errorCount and immediately terminate the program if any errors 
have been encountered. This prevents earlier errors from possibly leading to 
inconsistent data structures that might cause serious confusion or program logic 
errors in later stages of processing.	

If the program terminates due to errors, it will remove the output file it created, if it 
was created.	

Pointers and Objects	

There are a number of types of objects created by the linker:	

InFile	 one per input file	
Module	 one per .o file; one per library module	
Segment	 one per .begin statement	
Symbol	 one per symbol exported or imported	
Patch	 one per patch entry in an input module	
TableEntry	 one per exported symbol in a library	
Region	 one per chunk of memory (containing one or more segments)	
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For each of these, there is a “C struct” with a number of fields.	

Sometimes, we refer to structs as “objects”. (Of course since the linker is a C 
program, there is no subclassing relationship involved.)	

Many objects contain fields pointing to another object. For example, each Segment 
object contains a field named myModule, which points to the object representing 
the module which contains this segment. Likewise, each Symbol contains a field 
named usedInModule, which contains a pointer to the module that defined that 
symbol. And each Patch object contains a field named segment, which contains a 
pointer to the segment where that patch is to be applied.	

This input files read by the linker (the object files and library files) identify things by 
number. For example, every segment in a module is numbered. Likewise, every 
symbol is numbered.	

Initially, the linker will enter segments and symbols into arrays and use the array 
indices to locate the objects. But later, once the linker has identified the object by 
number, it will refer to in with a pointer.	

There are a number of linked lists. Mostly, the linked lists are singly linked, with a 
“next” pointer. An exception is the list of Region objects, since it is necessary to 
insert objects into the middle of the list. The list of Regions is doubly linked, with 
fields named next and prev.	

Most linked list are headed by a pointer to the first element. An example is the global 
list of all segments in the executable, which is pointed to by a variable named 
segmentList.	

However, some linked lists have to be constructed in order, so the new elements 
have to be added at the tail end. Examples are	
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	 The list of input files:	
	 	 firstInfile	
	 	 lastInfile	
	 The list of modules:	
	 	 firstModule	
	 	 lastModule	
	 The list of symbols:	
	 	 symbolList	
	 	 symbolListLast	
	 The list of patches:	
	 	 patchList	
	 	 patchListLast	

The list of Region objects is handled differently. This doubly-linked list is 
maintained as a circular list. In other words, the are no NULL pointers among the 
next and prev pointers. Instead, there is a special dummy “header” Region object, 
which does not represent a valid region. The next pointer of the header points to the 
first real region. The prev pointer of the header points to the last real region. The 
global variable regionHeader points to the special dummy region. Region objects 
also contain a field (regionStatus) to tell what sort of region it is; a special value 
(-1) is used to identify the dummy header object.	

Print Routines	

There are a number of functions which will send characters to stdout. These 
functions are useful in debugging link.c and for printing information during normal 
operation, e.g., for the “-s” option.	

PrintLExportedIndex ()	
PrintLibraryIndex ()	

PrintSymbolList ()	
PrintSymbolHeader ()	
PrintSymbol (Symbol * sym)	

PrintSegmentList ()	
PrintSegmentSublist ()	
PrintSegment ()	
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PrintModuleList ()	

PrintPatchList ()	
PrintPatch (Patch * pat)	
PrintPatch2 (Patch * pat)	
PrintPatch3 (Patch * pat)	

PrintRegionList ()	
PrintRegion (Region * reg)	

DumpAllDataStructures ()	

The print functions always leave the data structures unchanged. In some cases, the 
functions check for errors in the data structures and abort the linker if any errors 
are detected.	

The source code for link.c contains a lot of print statements that have been 
commented out. These were used during debugging and they have been left in to aid 
future debugging. These print statements may help the reader, since some of them 
effectively serve as comments.	

Additionally, for some error conditions, the code may call a print functions, which 
will additional useful information to be printed, before producing the error 
messages itself.	

The function DumpAllDataStructures is invoked by the -s command line option, as 
well as some of the debugging options.	

DumpAllDataStructures ()	
This function begins by renumbering the symbols, segments, and regions. Initially 
symbol and segment numbers are local to the input .o modules; after 
renumbering, every symbol and every segment will have a unique number, 
making the numbers meaningful to humans.	

This function then prints:	
	 A table with one line per module	
	 A table with one line per symbol	
	 A table with one line per symbol (grouped by segment)	
	 A table with one line per patch	
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	 A table with one line per region	
	 A table with one line per segment	

Before we print things, we renumber the everything, which is useful in the 
debugging printouts.	

RenumberSymbolsSegmentsAndRegions ()	
Run through all symbols, segments, and regions. Re-assign identification 
numbers.	

Segment numbers will start at 1. Any and all dummy zero-filled segments will be 
numbered -1.	

Recall that each input file numbered the symbols 1, 2, 3, …, the numbers were not 
unique; each file will have a symbol #1, etc. We abandon the numbers that were 
used in the original files. After reading in the input and creating the data structures, 
we identify Symbols by objects and pointers.	

However, the numbers are very needed in the debugging printout.	

This function also assigns a number to each segment (1, 2, 3, …) and a number to 
each region (1, 2, 3, …). 	

Initialization	

Upon startup, the program calls a function named CheckHostCompatibility to 
make sure some basic assumptions (word size, byte-ordering, etc.) are met.	

Next, some internal data structures are initialized.	

The “library index” is a hash table that will map the exported symbols in a library 
to the modules in that library that exported them. It is initialized.	

The “export index” is a hash table that will map the exported symbols from any 
module included in the output program to the internal representation for that 
symbol. It is initialized.	
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Next, the command line is processed by a function named ProcessCommandLine. If 
the “-h” (help) option is present, this function prints the help info and terminates the 
program. Some options are flags (either present or absent). For such options, we set 
the following variables to TRUE or FALSE:	

commandOptionS	 -s	
commandOptionK	 -k	
commandOptionD1	 -d1	
commandOptionD2	 -d2	
commandOptionD3	 -d3	
commandOptionD4	 -d4	
commandOptionD5	 -d5	
commandOptionD6	 -d6	
commandOptionD7	 -d7	
commandOptionDsmall	 -small	
commandOptionW1	 -w1	
commandOptionW2	 -w2	
commandOptionW3	 -w3	
commandOptionW	 -w	

The following options are used only for debugging the linker. They result in printing 
additional information during the linking:	

-d1	 Print all data after files read in, before the main algorithm	
-d2	 Print all data after algorithm finishes placement and patches	
-d3	 Print a trace during segment placement (implies -d1 & -d2)	
-d4	 Print a trace during equate processing	
-d5	 Print a trace during the synthesizing of patches	
-d6	 Print a trace during region rounding	
-d7	 Print a trace during output file creation	
-dsmall	 Set memory size to 0x1,0000 = 4 pages	

There must be exactly one output filename following “-o”. This file is opened for 
writing as the variable outputFile (of type FILE *). There will be a number of input 
filenames. For each, we create an InFile data structure. Each Infile contains a “FILE 
*” and we open each input file and determine whether it is a library or an ordinary 
object file by reading its magic number.	
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The InFile Data Structure	

There is a linked list of InFile structures, with one per input file. There is one InFile 
struct for every .o file and one for every .lib file.	

The variable firstInfile points to the first and lastInfile points to the tail of the list. 
The name of the original file is retained for use in error messages. The filenames are 
also placed into the output file.	

[ qqqq Verify that the previous sentence is true. This code is not yet written. ???? ]	

struct InFile {
  char *       filename;         // The name of an input file
  FILE *       filePtr;          // The input file
  int          isLibrary;        // 1 = this is a .lib file; 0 = .o file
  InFile *     next;             // Next pointer in linked list
};

Functions for Reading and Writing	

There are a number of support functions used to read data from files. These 
functions are located in BlitzSupport.c:	

ReadByte (FILE *) —> int	
ReadInteger16 (FILE *) —> int	
ReadInteger32 (FILE *) —> int	
ReadInteger64 (FILE *) —> int65_t	

We use this notation as shorthand to describe functions, along with their arguments 
and return values.	

There are a number of functions used to write to the output file. These functions are 
located in link.c:	

WriteInteger8 (int)	
WriteInteger16 (int)	
WriteInteger32 (int)	
WriteInteger64 (int64_t)	
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Reading the Input Files	

In the next step (in the main function), we run through the linker list of input files 
and read each file. The file is either a normal (simple) object file containing a single 
module, or it is a library file.	

If the file is a simple object file, we create a Module structure and add it to the list of 
Module objects.	

If the input file is a library, we create a single Module object for each module in the 
library. However, we do not add it to the linked list of Modules. The linked list is for 
modules that will definitely be included in the output file; at this stage we can not 
assume that any library module will be added to the output file.	

Instead, we read through all the exported symbol names for a module. For each 
symbol, we add the name to the Library Index. The Library Index maps symbol 
names to Module objects. We call a function named AddToLibraryIndex to do this.	
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The Module Structure	

One Module object is created for every input file. A library will contain one or more 
modules and one Module object will also be created for each module in the library.	

struct Module {
  char *       moduleName;             // The name of the original .o file
  int          moduleNumber;           // Sequential number (assigned
                                       //           when created)
  char *       filename;               // The name of the input file
  FILE *       filePtr;                // The input file containing this module
  int64_t      startingLoc;            // Where in the file this module begins

// (after magic number)
  Module *     next;                   // Next pointer in linked list
  char *       sourceFilename;         // The name of the original .s file
  int          numberOfSegments;       // Number of segments in this module
  int          numberOfSymbols;        // Number of symbols in this module
  Symbol * *   symbolArray;            // Ptr to an array of ptrs to symbol
                                       //                         objects
  Segment * *  segmentArray;           // Ptr to an array of ptrs to segment
                                       //                         objects
};

Each module has a name (such as “Hello.o”) and this name is stored in the object. 
Each module come from a file: either a simple object file or from a library file. The 
Module object contains information (filePtr, startingLoc) about where the module 
can be found.	

Module objects are kept in a linked list. The variable firstModule points to the head 
of this list and lastModule points to the tail. The field next is used for this linked 
list. This linked list is a list of all modules that will go into the output file.	

Each module originated in an assembly language program “.s” file. The name of this 
file is retained as sourceFilename. The filename is used in printing error messages.	

A module consists of a number of “segments”. Recall that each segment was 
introduced in the assembly file with a “.begin” pseudo-op. The linker must process 
each segment (e.g., finding a place for it in memory) and, for each segment in the 
module, a Segment object will be created. The module’s segments are pointed to by 
an array named segmentArray. We also maintain a field named 
numberOfSegments so we can run through the array in order.	
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The segments are numbered in order (1, 2, 3, …) starting with 1. To make the 
segmentArray indices match the segment numbers, the array will contain an extra 
unused entry for index 0. As a result, the size of the array is numberOfSegments+1.	

Each module will define a number of symbols and for each one we will create a 
Symbol object. The module’s symbols are pointed to by an array named 
symbolArray. We also maintain a field named numberOfSymbols so we can run 
through the array in order.	

Just like the segment, the symbols are numbered in order (1, 2, 3, …) starting with 1. 
To make the symbolArray indices match the symbol numbers, the array will contain 
an extra unused entry for index 0. As a result, the size of the array is 
numberOfSymbols +1.	

Hash Tables: Library Index and Exported Index	

There are two dictionaries mapping string names to objects. One is called the 
“Library Index” and the other is called the “Exported Index”.	

Both mappings are implemented as hash tables that map string names into objects. 
The Library Index maps string names into TableEntry objects. The Exported Index 
maps string names into Symbol objects.	

Both mappings are organized identically. Here we will discuss the organization of 
the Exported Index, but the Library Index is the same.	

Each Symbol object contains a variable length string. The fields of relevance from 
the Symbol object are stringLength and stringChars. The Symbol object is 
described elsewhere and we will ignore the remaining fields in our description of 
the hash table.	

We assume that string names may contain an arbitrary sequence of characters, 
possibly including embedded NULL \0 bytes, so we use a string length for the 
number of bytes in the name, rather than use the NULL-terminated scheme typically 
used in Unix/Linux.	
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The key functions are	

void          AddToExportedIndex (Symbol * sym)
Symbol *      SearchExportedIndex (Symbol * sym)

To add an element to the mapping, we first create a new Symbol object and then call 
AddToExportedIndex. If there is already an entry in the mapping with the same 
symbol name, this function will print an error message.	

Not all Symbol objects will be added to the mapping. In particular, we will only add 
symbols that have been exported to the mapping. In the case of imported symbols, 
we will have a Symbol object and we need to search the mapping to see if it contains 
another Symbol with the same name. This test is done with the 
SearchExportedIndex function.	

To search the mapping, we take the name and compute a hash value from the bytes. 
This computation is performed by a function named ComputeHash. The 
ComputeHash function lives in BlitzSupport.c since it is used in other Blitz-64 
programs.	

The mapping is implemented as an array of pointers. Each pointer points to a linked 
list of Symbol objects. Each Symbol object contains a field named 
exportedIndexNext, which is used for this linked list.	

To find an element, we compute the hash value and then use it (mod array size) as 
an index into the array. This gives us a pointer to a linked list. Then we perform a 
linear search on the linked list.	

The array size is defined by this constant, such as:	

#define HASH_TABLE_SIZE 4999

This number can safely be enlarged, but you should always use a prime number.	

Assuming that a typical program uses 2,000 exported symbols, most linked lists will 
not be longer than one element. Thus, the first object we test is highly likely to be the 
match we are looking for. To handle larges programs with good performance, this 
constant has been increased to an even larger number.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	248 284



Appendix 4: The Linker Algorithm	

The Library Index is similar, except that it maps string names into TableEntry 
objects.	

struct TableEntry {
  TableEntry * next;                   // Linked list for each hash value
  Module *     exportedFromModule;     // The module that exported this symbol
  int          stringLength;           // Number of characters
  char         stringChars[0];         // The characters
};

Recall that a library file contains a number of modules and each module exports a 
number of symbols. Each library life begins with an index telling which symbols are 
exported and which module exported them. First, the linker must first read in all the 
library files and enter each exported symbol into the Library Index. Later, as the 
linker is building the output file, it may encounter an imported symbol. The linker 
will then search the library index to find the symbol. After retrieving a TableEntry 
object, the linker can determine (using the exportedFromModule field) which 
module from the library to add to the growing output file.	

When adding symbols to the Library Index (in AddToLibraryIndex), we check to 
make sure that there is not already an entry there and print an error message if 
necessary.	

The Library Index is built first, as the input files are processed and library files are 
encountered.	

The Module List	

At this point (within function main) we have already run though the input files. We 
have already built the ModuleList, adding one Module for each .o file and we built 
the Library Index as we encountered .lib files.	

In the next step, we will enlarge the Module List so that it will contain all the 
modules that need to go into the output file.	

Initially, the list contains only modules that came from .o files, but we may need to 
bring in additional modules from library files. Whenever a module imports a symbol 
that is otherwise undefined, we will search the Library Index looking for a module 
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that exported that symbol. If one is found, the corresponding module will be added 
to the Module List.	

Otherwise if there is no entry in the Library Index, an error will be generated.	

Reading the Modules: AddNewModule	

A function named AddNewModule is called once for each module that will go into 
the output file. The AddNewModule function will go the file that contains the 
module (either a .o object file or a .lib library file) and will read in the header 
information describing that module. The function will add information to the 
growing data structures.	

void AddNewModule (Module * mod)

The Module object contains information about which file contains the module and 
where in the file the module begins. This function begins by reading the header 
information (number of segments, number of symbols, source file name).	

Each module will define a number of symbols. The AddNewModule function will 
allocate an array (symbolArray, in the Module object) with one element per 
symbol. For each symbol in the module, we will create and initialize a Symbol 
object. Furthermore, if the symbol is exported, this function will add the symbol to 
the Exported Index.	

Each module will also contain a number of segments. The AddNewModule function 
will allocate an array (segmentArray, in the Module object) with one element per 
segment. For each segment in the module, this function will create and initialize a 
Segment object.	

Each module will contain a number of patches. For each patch in the module, the 
AddNewModule function will create and initialize a Patch object. Every Patch 
object will be on exactly two linked lists. There is one linked list for each module and 
there is a global linked list of all patches.	

The AddNewModule function will not read in the actual data bytes for the segment, 
since that information will not be needed until later, when we are ready to build the 
output file.	
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Before we continue describing the initialization algorithm in function main, we will 
describe the primary data structures used in the linker.	

The Segment, Symbol, and Patch Objects	

Next, we discuss the data structures that are used to represent the information 
contained in the modules that are to be linked together. Generally speaking, these 
data structures are allocated, set up, and initialized by the function 
AddNewModule.	

struct Segment {
  Segment *     next;               // For the linked list of all segments
                                    //      in executable
  Segment *     nextForRegionList;  // For the linked list of all segments
                                    //      in a region
  Segment *     subListNext;        // For segmentList0, ...4, ...5, ...6, ...7
  Module *      myModule;           // The module from which this segment came
  int64_t       locationInFile;     // Location in file where segment data
                                    //    bytes are located
  int           segNumber;
  int           lineNumber;
  int64_t       initialLength;      // Size in bytes (as given in .o module)
  int           isKernel;
  int           isExecutable;
  int           isWritable;
  int           isZerofilled;
  int64_t       startAddr;
  int64_t       gpValue;
  Patch *       patchList;          // The patches that apply to this segment
  Patch *       patchListLast;      // .
  Symbol *      labelList;          // The labels that are in this segment
  int64_t       currentAddr;        // Where the segment is placed in memory
  int64_t       currentLength;      // How big is this segment, in bytes
                                    //      (may not be a multiple of 8)
  int64_t       paddingAdded;       // Number of bytes (0..7) added to bring
                                    //       segment size up to multiple of 8
};
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struct Symbol {
  Module *     usedInModule;        // The module from whence this symbol came
  int          symbolNumber;        // The number of the symbol (1, 2, ...)
  int          lineNumber;          // Source file line number
  int          symbolType;          // 1=IMPORTED, 2=LABEL, 3= EQUATE
  Segment *    segment;             // Only for type 2 (LABEL)
  int64_t      offset;              // LABEL: offset from segment start;
                                    // EQUATE: offset from relativeTo
                                    //      symbol, or absolute value
                                    // IMPORT: unused (zero)
  int          relativeTo;          // Only for type 3 (EQUATE);
                                    //      0 means "absolute" &
                                    //      offset is the value
                                    // IMPORT, LABEL: unused (zero)
  int          exported;            // Only for type 2 (LABEL) and
                                    //      type 3 (EQUATE)
  Symbol *     target;              // Type 1/IMPORTED: ptr to exported symbol;
                                    //      Type 3/EQUATE: ptr to relativeTo
                                    //      or NULL.
  Symbol *     listNext;            // For the linked list of all
                                    //      symbols in executable
  Symbol *     exportedIndexNext;   // Linked list for each hash value
                                    //      in ExportedIndex
  Symbol *     nextForSegmentList;  // There is also one linked list per
                                    //      segment (labels only)
  int64_t      currentValue;        // For LABELs: the address; for EQUATEs:
                                    //      the computed value
  int          markFlag;            // EQUATES only: 0 = not done yet;
                                    //      1=in progress;
                                    //      2=currentValue determined
  int          stringLength;        // Number of characters
  char         stringChars[0];      // The characters
};
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struct Patch {
  Patch *      next;                // For the linked list of all patches
  Patch *      nextForSegmentList;  // There is also one linked list per segment
  int          patchType;           // 1,2,3, ...
  int          lineNumber;          // Source file line number
  Segment *    segment;             // Segment where this patch must be made
  int64_t      initialOffsetToPatch;// Offset into segment where patch
                                    //      must be made
  int          initialSize;         // Number of bytes present in .o file
                                    //      (0,4,8,12, or 16)
  Symbol *     targetSymbol;        // Target symbol (NULL = absolute)
  int64_t      offsetFromTarget;    // Offset from target symbol (often zero)
                                    // .  For patch type = ALIGN, offset
                                    //      will be 8,16,32,or 16384
  int          exactSize;           // Exact size of result in bytes
                                    //      (4, 8, 12, 16) or -1 if don’t care
                                    // .  Only for Format S1,S2, ... S7
  int          sizeIncrement;       // The number of bytes to be inserted
                                    //      by the linker
  int64_t      currentOffsetToPatch;// Offset into segment where the patch
                                    //      will actually occur
};

Segment Objects	

There is a linked list containing all the segments that will be placed in the output file. 
This list is pointed to by the global variable segmentList. The next field in a 
Segment object is used for this list.	

Later, we will describe memory “regions”. The region concept is used when placing 
segments in memory, i.e., when assigning addresses to segments. Main memory will 
be divided into a sequence of regions. Each region will have a single set of attributes 
(writable, executable). Each Region object will have a linked list of all the segments 
in it. The nextForRegionList field in Segment objects is used for this linked list. For 
now, this field is just initialized to NULL.	
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Later, we’ll look at the attributes of a segment and add it to exactly one of the 
following linker lists:	

segmentList0	 Linked list of all fixed segments	
segmentList4	 Linked list of segments that are not Executable, not Writable 	
segmentList5	 Linked list of segments that are not Executable,     Writable	
segmentList6	 Linked list of segments that are     Executable, not Writable	
segmentList7	 Linked list of segments that are     Executable,     Writable	

Each segment came from a module. The myModule field points to this Module 
object.	

Segments are numbered within a module. The segNumber field contains this 
number. Each segment is placed in the module’s segmentArray; the array index and 
this field match. Patches refer to segments by number.	

The object file contains the line number on which the segment began. The 
lineNumber field saves this information so it can be used in error reporting.	

The bytes for the segment (the data and machine code bytes) are in the file and are 
not read at this time. The initialLength field tells how many bytes are in the file. The 
linker may increase the size of segments (as a result of inserting bytes when 
translating synthetic instructions or .align directives), so the segment size may grow. 
However, the initialLength field remains unchanged.	

Each segment has these attributes: isKernel, isExecutable, isWritiable, 
isZerofilled, startAddr, and gpValue. These are read in and stored in the Segment 
object for later use.	

Each module will contain a number of patches. Each patch applies to one segment, 
namely the segment containing the synthetic instruction or the .align pseudo-op. 
Each Segment contains a list of Patch objects. This list is pointed to by the fields 
patchList and patchListLast. As the patches are read in, they are added to the list 
for whichever segment they apply to (in addition to the global patch list). The 
patches are in order of increasing address, so the new Patch objects are added to the 
tails of the lists.	

Of the symbols in a module, some are “labels”, which identify locations within a 
particular segment. (Other symbols are “equates” and “imports”.) The labels for a 
segment are kept in a linked list, and each Segment has a field named labelList 
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which will point to a linked list of Symbol objects. Each Symbol on this list will be a 
label in this segment. Within the Symbol objects, there is a field named 
nextForSegmentList which is used for this linked list.	

Later in the linking algorithm, each segment will be assigned an address in memory. 
(Actually, the algorithm may try different addresses until it can fit everything in, so 
the segment may be moved around.) The currentAddr tells where this segment will 
be placed. At this stage, this field is merely initialized.	

The linker may grow a segment, and the currentLength field tells the current size of 
the segment. At this stage, this field is merely initialized.	

Symbol Objects	

Each module contains a bunch of symbols. For each symbol, a Symbol object will be 
created. The usedInModule field (in the Symbol objects) points to the Module that 
contained this symbol.	

Modules identify symbols by number. Each symbol in a given module is numbered 
(1, 2, 3, …). This number is used by patches and other symbols. The symbol number 
is kept in the field symbolNumber.	

The lineNumber field tells where in the .s source code file the symbol was defined. 
The source code line number is used in sorting the labels within each segment, in 
addition to error reporting. 	

There are three different kinds of symbol: “Imported”, “Label”, and “Equate”. The 
symbol type is identified but the field symbolType and corresponds to the way in 
which the symbol was defined in the .s source code file. A number is used for 
symbolType:	

	 1 = imported	
	 2 = label	
	 3 = equate	

Depending on what type of symbol it is, the following fields are used a bit differently.	
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For imported symbols…	

	 symbolType	 1 = “imported"	
	 segment	 not used	
	 relativeTo	 not used	
	 offset	 not used	
	 exported	 not used	
	 target	 ptr to matching symbol, which was exported	

For label symbols…	

	 symbolType	 2 = “label"	
	 segment	 ptr to Segment in which this label occurs	
	 relativeTo	 not used	
	 offset	 offset into segment, in bytes	
	 exported	 1=exported; 0=not exported	
	 target	 not used	

Equate symbols can either be “absolute” or “relativeTo”. Initially, they can be 
distinguished by the relativeTo field. Subsequently, they are distinguished by the 
“target” field.	

An “absolute” symbol looks like this…	

	 symbolType	 3 = “equate"	
	 segment	 not used	
	 relativeTo	 not used (zero)	
	 offset	 The value	
	 exported	 1=exported; 0=not exported	
	 target	 NULL	

An “relativeTo” symbol looks like this…	

	 symbolType	 3 = “equate"	
	 segment	 not used	
	 relativeTo	 not used after initialization (a symbol number)	
	 offset	 An offset to be added in (often zero)	
	 exported	 1=exported; 0=not exported	
	 target	 A pointer to another symbol	
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There is a global list of all symbols, which is headed by symbolList and 
symbolListLast. The next field is used for this linked list.	

A symbol can be exported. If the symbol is exported, then it will be added to the 
Exported List, so that it can be located. (We’ll need to look symbols up in the index 
whenever we have an imported symbol, so we can link an imported symbol to its 
matching exported target.) The exportedIndexNext field is used in the hash table 
linked lists for the Exported Index. If the symbol is not exported, then this field will 
never get used.	

There is a linked list of all labels that appear in a segment. This list is pointed to by 
the field labelList in the Segment object. If a Symbol is a label, then it will get 
added to the linked list for the segment in which it occurs. The field named 
nextForSegmentList is used for this purpose. If the Symbol is not a label, the 
nextForSegmentList field will remain unused.	

We know the value of absolute symbols as soon as the segment is read in from a file, 
but the value of labels will only be known later in the linking, after the segment has 
been assigned an address in memory. And if one placement doesn’t work, the 
segment will get moved to another memory address. Thus, the value of the symbol 
may change. The field currentValue is only used for labels and will be changed 
during the linking algorithm.	

With equated symbols, the symbol is defined in terms of some other symbol, called 
the “relativeTo” symbol. The equate symbol can be defined as equal to the relativeTo 
symbol, in which case the offset will be zero. Or the offset can be non-zero, in which 
case we will need to add the offset to the value of the relativeTo symbol, once it is 
known.	

At one point, we must determine the value of all equates. It is always possible that 
equates can be circularly defined. Cyclic definition is an error; we must be able to 
process the equates and assign a value to each. The field markFlag is used when 
assigning values to the equates.	
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Patch Objects	

A “patch” indicates that the linker will need to modify the code generated by the 
assembler in some specific location in a segment. There are two reasons that the 
linker will need to perform patching.	

The first type of patch is for a synthetic instruction which could not be translated by 
the assembler. This could happen when the assembler was unable to determine the 
target address for the instruction.	

The second reason the linker must take action is for .align pseudo-ops. Since the 
assembler doesn’t know where exactly the segments will be placed in memory, it is 
unable to know how many bytes to insert to achieve the required alignment. In 
addition, there may also be uncompleted synthetic instructions preceding the .align 
again making it impossible for the assembler to know how many bytes to insert to 
achieve the required alignment.	

The will be one Patch object for each required patch and all Patch objects will be 
allocated in the AddNewModule function. Associated with each module is a list of 
patches that must be made to the segments in that module. For every module that 
will be included in the output file (i.e., for every module in a .o input object file and 
for every module pulled in from a library file), there will be a separate list of 
Patches. These lists will be built by AddNewModule.	

Each Patch object will actually sit on two linked lists. First, there is a global linked 
list of all Patch objects. This list is pointed to by the global variables patchList and 
patchListLast, and each Patch object contains a next field for this global linked list.	

In addition, each Patch applies to a particular location within some segment. Each 
segment contains its own list of Patch objects. Each Segment object contains fields 
called patchList and patchListLast which point to the head and tail of the 
segment’s private list. Every Patch object will be on exactly one of these private lists.	

These private per-segment patch lists are in non-decreasing order, by the offset that 
needs to be patched. Fortunately, the assembler will add the patches to the object 
files in order, so all the linker does is verify the correct ordering is followed. 	

Each Patch contains a field named segment which points to the Segment object for 
the segment within which the patch is to be made.	
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(Any Patch “p” will be on the linked list “p->segment->patchList” and any Patch on 
this list will point back to that same Segment.)	

Each Patch contains a field named patchType which tells what sort of patch 
operation the linker is required to perform. One type is “alignment” and the 
remaining types are for the different types of synthetic instructions. The patch type 
is given by an integer in the range 1 … 25. Patch type 24 is for “alignment patch”.	

Each Patch contains a field lineNumber, referring to the original .s assembly 
language file containing the synthetic instruction or .align causing the patch. The 
lineNumber is only used to print error messages.	

Each Patch contains a field initialOffsetToPatch. This gives an offset in bytes from 
the beginning of the segment of the address that needs to be patched. This offset 
value comes from the .o object module and is not changed by the linker. However, 
the linker will be inserting bytes into segments as a result of other patches. Thus the 
actual offset may increase during the linker algorithm.	
	
Each Patch contains a field initialSize. This contains the number of bytes already 
present in the segment prior to linking. There is also a field named exactSize which 
indicates whether the assembler has already determined the number of bytes 
required for the patch.	

For alignment patches, there will be zero bytes initially present in the segment. The 
initialSize will be 0. The exactSize field will be set to -1, indicating that the linker is 
unconstrained and can insert as many bytes as it needs to.	

For most synthetic instructions, the assembler will make no assumptions about how 
the linker will translate it to machine code.  In these cases, the initialSize will be 4 
to indicate that 4 bytes are initially present in the segment. The exactSize field will 
be set to -1, indicating that the linker is unconstrained and may insert additional 
bytes as necessary in translating the synthetic instruction.	

However, for a few synthetic instructions, the assembler will have determined that 
there must be a certain number bytes in the translation. Although the assembler was 
unable to perform the translation itself, it may have relied on that being the size of 
the translation. In this case, both initialSize and exactSize will be equal and set to 4, 
8, 12, or 16. There will be exactly that many bytes initially present in the segment. 
This exact size is not really necessary, but is included as a safety check (a program 
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logic check) to make sure that the linker does exactly what the assembler expected it 
to, and relied on.	

For synthetic instructions, there will always be at least 4 bytes initially present in the 
segment. These 4 bytes will contain 4 register fields, in the normal bits for machine 
instructions for Reg3, Reg2, Reg1, and RegD. Some synthetic instructions have 
register fields and these will be included in the obvious way in thee 4-bit fields. The 
opcode bits (OP1 and OP2) will always be zero; the type of instruction can be 
determined from patchType.	

If the initial version of the segment contains additional words (i.e., when exactSize 
is 8, 12, or 16), these additional words will be zeros. In other words, the second, 
third, and fourth words (if present) will be set to zero in the initial version of the 
segment.	

Each Patch contains two fields named targetSymbol and offsetFromTarget. These 
specify the operand that requires linker intervention. The targetSymbol will be set 
to point to a Symbol object. The offsetFromTarget will be an integer and will often 
be zero. Later, when we determine the actual value of the target symbol, the offset 
will be added to give the final, effective value to be used in creating the machine 
code.	

During the linking algorithm, the size allocated for a patch may be increased. For 
example, in an alignment patch, the linker may determine that 300 bytes must be 
inserted. As another example, in the case of an unconstrained synthetic instruction 
(i.e., where initialSize = 4 and exactSize = -1), the linker may determine that an 
additional word of machine code is necessary. The linker may grow an 
unconstrained patch by adding up to 3 words (to make the total 16 bytes).	

As a result of growing patches and inserting bytes, the offsets (from the beginning of 
the segment) to everything that follows the patch will be shifted.	

The sizeIncrement and currentOffsetToPatch fields will be used by the linker 
algorithm, but will be set to zero initially. As the algorithm progresses, 
sizeIncrement and currentOffsetToPatch will change. Both are in terms of bytes.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	260 284



Appendix 4: The Linker Algorithm	

Processing Imported Symbols	

Now, let’s continue describing the algorithm in function main that initializes these 
data structures.	

Prior to processing the imported symbols step, we ran through all the input .o files 
by going through the Module List and calling function AddNewModule for each 
module. This allocated and initialized the Segment, Symbol, and Patch object for 
each module that was explicitly named on the command line.	

Whenever an imported symbol is not otherwise defined, but is defined by some 
module in some library, that library module must be added to the output file. The 
added module itself may import more symbols, which may themselves be undefined, 
causing additional modules to be pulled in from the library files.	

We’ve already gone through the Module List in order to call AddNewModule for each 
explicitly mentioned Module.	

Now, in order to pull in the necessary library modules, we go through the Module 
List a second time, from beginning to end, looking at all imported symbols. During 
this process, we may add additional modules to the end of the Module List. In 
particular, whenever we determine that another module from a library is needed, 
we’ll add a new Module to the tail of the Module List.	

Whenever we add a new library module to the Module List, the function 
AddNewModule must be called to allocate additional Segment, Symbol, and Patch 
objects. Since newly added modules are placed at the tail end of the Module List, 
every newly added module will get processed later on as we encounter it when 
going through the Module List. Thus, its imported symbols will eventually be 
examined, perhaps pulling in yet more modules. (Obviously, this process will 
terminate since we only have a finite number of modules that can be added to the 
list.)	

For each module, we’ll run through all the symbols in that module, looking only at 
symbols of type “imported”. For each imported symbol, we’ll locate a matching 
symbol (i.e., same spelling) that is exported. First, we check the Exported Index to 
see if there is a matching symbol that has already been exported. If found, then we 
can move on. Otherwise if there is no matching entry, we must search the Library 
Index. If we find a match there, then we will pull in the module; otherwise we print 
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an error (“Undefined symbol”). As each module is processed by AddNewModule, 
the symbols it exports will be added to the Exported Index.	

After pulling in all the modules, we make a second pass through the global list of 
Symbols and link every imported symbol with the corresponding exported symbol. 
In particular, we make the imported symbol’s target field point to the exported 
symbol.	

Next, we run through the global symbol list a second time. This time, we look at the 
relativeTo field. If a Symbol’s relativeTo field points to an imported symbol, we 
will modify the symbol to point directly to the exported symbol.	

Next, we run through the global list of Patch objects. If the Patch object’s 
targetSymbol points to an imported symbol, then we modify the patch to point 
directly to the exported symbol.	

Sorting the Label and Segment Lists	

Every symbol that is a label belongs to exactly one segment. In other words, each 
label is intended to identify an address within some segment.	

Each Segment object contains a linked list of all the labels that occur within it. Each 
Segment object has a field named labelList which points to a linked list of Symbols, 
which are linked using a field named nextForSegmentList.	

The assembler places all symbols in the .o file in a random order. (The symbols come 
out of a hash table and the order is a byproduct of the hashing, so… it’s effectively 
random.)	

In the next step in function main, we sort each segment’s label list to get them into 
the order they appeared in the original source code. This is necessary because, as we 
go through a segment and process the patches, we will be inserting bytes here and 
there. As we pass by labels, we will need to update them as well, to reflect the new 
addresses they will represent.	

You might guess that we sort the labels on initial offset into the segment. However, it 
is possible that there can be more than one label for a single offset.	

Blitz-64: Assembler and Linker / Porter	 	 Page  of 	262 284



Appendix 4: The Linker Algorithm	

Consider this example:	

label1:
.align 16

label2:

We perform the sort before we invoke PlaceSegment, which means that the ALIGN 
patches all have zero length. Thus, the offsets for label1, label2, and the ALIGN will 
all be identical. But we need to process them in the correct order, since the ALIGN 
will expand to several bytes, making the resulting offsets for label1 and label2 
different.	

We know that only one label can occur per source code line so, instead of sorting on 
offset, we sort on source code line number.	

SortLabelLists ()	
This function looks at the label list for each segment and sorts it. The sort is 
based line number into the segment. Actually, because ALIGNs have length zero, it 
is better to sort on line number. This keeps things in the proper order.	

There are a couple of additional helper functions that do the actual sorting:	

quicksortLabelList (int m, int n)	
partitionLabelList (int left, int right) —> int	

Segment Ordering	

Generally speaking, a good way to pack “things” into an available space, is to try to fit 
the largest things in first, and proceed in order from largest to smallest. (Imagine 
packing several suitcases into the trunk of a car or furniture into a moving truck. You 
want to put the largest items in first.)	

For floating segments (where the programmer has not said explicitly where to place 
the segment), the linker takes this approach when placing segments in memory: It 
looks at the floating segments in order, from largest to smallest.	

The problem of packing segments into memory in an optimal way must, I think, be 
NP-complete; but trying to place larger segments before we try to place the smaller 
segments should yield acceptable results.	
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Before now, we have a single, global list of segments. In this step, we will partition 
the set of segments into 5 lists, which we call:	

segmentList0	 All fixed segments	
segmentList4	 Floating segments that are not Executable & not Writable 	
segmentList5	 Floating segments that are not Executable & Writable	
segmentList6	 Floating segments that are Executable & not Writable	
segmentList7	 Floating segments that are Executable & Writable	

The segments on all lists will be ordered from largest to smallest.	

We do this by first sorting the list of all segments. Then, we run through it an place 
each segment on exactly one of the sublists.	

The actual lengths of the segments will change over the course of the linker 
algorithm. (The segment’s currentLength will change, but initialLength will 
remain unchanged). Since the lists are not ordered by the actual length but by initial 
length, the order may not be exactly perfect, but since the order of the segments is 
unlikely to change significantly as segment sizes are adjusted, this approach should 
lead to fairly good packing of segments into the available spaces.	

OrganizeSegmentLists ()	
This function sorts the global list of all segments from smallest to largest, based 
on initialLength. Then, it builds all the individual segment lists, ordered from 
largest to smallest.	

There are a couple of additional helper functions that do the actual sorting: 
QuicksortSegmentArray and PartitionSegmentList.	

[ We don’t actually care about the order of the fixed segments. Since their locations 
are determined by the programmer, it really doesn’t matter what order we look at 
each one. And you might have noticed that it is inefficient to sort one big list. We 
don’t need to sort the fixed segments at all and it would be more efficient to sort the 
four small lists separately. Technically, this is accurate, but… (1) We do not expect to 
see many fixed segments; (2) We expect most segments to be either executable and 
not writable (for code and constants), or not executable and writable (for data), so 
we really have only two significant lists; and (3) We just don’t expect to see a huge 
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number of segments. The time to quick-sort even a few hundred segments is still 
small. ]	

Regions and Placing Segments	

All of main memory will be represented within the linker and Region objects will be 
used to represent memory regions.	

struct Region {
  Region *     prev;            // Doubly linked list, ordered by address
  Region *     next;            // .
  Segment *    segmentList;     // List of segments in this region
  int64_t      address;         // Starting address of this region
  int64_t      length;          // Number of bytes (not necessarily a
                                //     multiple of anything)
  int          regionStatus;    // -1 = header; 0 = free; 4/5/6/7 = allocated
  int          regionNumber;    // For printing only
};

Each region has a starting address and a length in bytes. The fields named address 
and length describe the region’s location and size.	

Region Invariants	

•	Every byte of memory belongs to exactly one region.	
•	The regions are kept in an ordered list.	
•	All regions are contiguous.	
•	The address of the first byte of a region directly follows the address of the last 
byte of the previous region.	
•	Each region is either free or allocated.	
•	A free region contains no segments.	
•	An allocated region contains one or more segments.	
•	The segments in a region occupy exactly the bytes within that region.	

Region objects are organized in a doubly linked list. The fields next and prev are 
used for this purpose.	

The list is organized as a circular ring. There is a dummy header object that is 
inserted into the ring. Unlike all other Region objects, the dummy header object 
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does not represent a range of memory addresses. The dummy header is inserted 
after the last Region and before the first Region.	

Each region has a status given by the field named regionStatus. These codes are 
used:	

	 -1	 Dummy header	
	 0	 Unallocated, i.e., free	
	 4	 Allocated, Not Executable, Not Writable	
	 5	 Allocated, Not Executable, Writable	
	 6	 Allocated, Executable, Not Writable	
	 7	 Allocated, Executable, Writable	
	 	
Memory regions that are “free” are available for use. Initially, the region data 
structure contains only a single region which contains all memory bytes. (And the 
dummy header region exists, as well.)	

The linker algorithm will place segments in memory. Whenever a segment is placed 
in memory, the region data structure will be modified. Bytes will be removed from a 
free region and added to the allocated region that will contain the segment.	

Segments have memory attributes (executable, writable). When a segment is placed 
in memory, the pages in that region will need to be marked by the OS kernel with the 
correct (executable, writable) attributes. So when a region of memory is allocated, it 
will be allocated with some particular set of attributes.	

Each region has a list of the segments that are in that region. When a segment is 
placed into a region, it will be added to that region’s segment list. The field 
segmentList points to the linked list of Segment objects. Within Segment objects, 
the field nextForRegionList is used for this inked list. Unallocated regions will have 
segmentList == NULL.	

Region objects are numbered with a field named regionNumber. This field is only 
used for printing to distinguish Region objects. There is a global variable named 
nextRegionNumber which is used to assign increasing numbers whenever a new 
region is created.	
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Initially, main memory will be divided into two regions:	

	 • Dummy Header	
	 • Free Region (covering all of usable memory)	

The following constants are initialized during program startup based on the -k 
command line option:	

	 Kernel (-k)	 User Programs	
START_OF_MAIN_MEMORY 0x0_0000_0000 0x8_0000_0000
SIZE_OF_MAIN_MEMORY 0x8_0000_0000 0x8_0000_0000
HIGHEST_MAIN_MEMORY_ADDR 0x7_FFFF_FFFF 0xF_FFFF_FFFF

(There is also a -dsmall option which will reduce memory size to 4 pages, which is 
useful for debugging and testing boundary cases.)	

During the linking algorithm as segments are placed in memory, a new region may 
be created and “carved out” of an existing free region.	

The main linker algorithm repeatedly loops, looking for a solution to the segment 
placement problem. Whenever the algorithm iterates, it needs to start over. At the 
start of each new iteration, all memory regions will be freed and the Region data 
structure will be completely re-initialized.	

MemoryReset  ()	
This function creates the initial circular ring of two Region objects. Upon 
subsequent calls, it frees any previously allocated Region objects, as well.	

As mentioned above, each region points to a linked list of segments that are in that 
region. During MemoryReset, we also go through the segments and re-initialize 
their “next” pointers, effectively removing them from the regions.	

PrintRegionList () 	
This function prints a table showing all the regions. It also contains a call to 
CheckRegionConsistency.	
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PrintRegion (region) 	
This function prints a single line describing a single region, including the 
numbers of the segments in that region.	

CheckRegionConsistency () 	
This function runs through the region data structure, performing a number of 
consistency checks. It is only invoked from PrintRegionList.	

In a normal use of the linker CheckRegionConsistency will not be invoked. If there 
are problems or bugs, any run of the linker will almost certainly involve a command 
line option that will print the region list and thus invoke CheckRegionConsistency.	

The programmer can specify exactly where a segment is to be placed, using the 
“startaddr=” on a “.begin” statement. A segment for which the programmer has 
given a starting address is called a “fixed” segment and must be placed at the exact 
address the programmer has specified. A segment without a starting address is 
called a “floating” segment. The linker will determine the address of floating 
segments and place them wherever it determines is a good place.	

CreateNewRegion (freeRegion, address, segment)  —> ptr to new region	
This function places a segment in memory. It creates a new Region object, places 
the segment in it, and returns a pointer to the new region. The function takes a 
free region as input, along with the segment that is being placed in memory and 
the address where the segment is to be placed. The free region is guaranteed to 
contain all the memory addresses that will be needed to place this segment at 
this address, but the free region may contain additional bytes as well.	

This function will create a new Region object and place it in the ring data structure. 
The new region may be identical in size and location to the given free region, in 
which case the new Region will entirely replace the free Region. Or the new Region 
may leave remnant free regions. There may be a shortened free Region before the 
new Region and/or there may be  shortened free Region after the new Region.	

Note that after calling this function, it is possible that the original free region has 
been entirely replaced by an allocated region and that this are region may have 
exactly the same (executable/writable) attributes as the region before or after it. 
These regions must be merged, but that is the responsibility of the caller; it is not 
done by this function.	
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MergeWithNeighbors (region)	
This function is passed a newly allocated Region, previously created by function 
CreateNewRegion. It is possible that this newly allocated region has the exact 
same attributes (executable, writable) as the region directly before or after it. In 
such cases, the two regions are merged into one larger region. This function uses 
a helper function called MergeTwoRegions, first to deal with the region before 
the candidate region and second to deal with the region after the candidate 
region.	

MergeTwoRegions (region1, region2)	
This function will merge these two regions into one region if and only if they have 
the same regionStatus codes. Whenever two regions are merged, the first 
remains and the second disappears. All segments in the second region are moved 
to the segmentList of the first region and the second region object is freed.	

RegionsShareAPage (firstRegion, secondRegion) —> bool	
This function tests to see if two regions happen to share a page. The regions may 
not be adjacent, but first region is assumed to come before the second region. 
This function determines the page number of the last byte of the first region and 
the first byte of the second region and asks whether they are on the same page.	

If two segments with different (executable, writable) attributes are placed in 
adjacent regions that happen to share a page, then an error must be reported.	

If we are linking a user program, then we need to enforce the rule that two segments 
may not share a page unless that have the same (executable/writable) attributes. 
The next function does this.	

RegionsInConflict (region, otherRegion) —> bool	
This function determines whether these two regions have conflicting attributes. 
For example, if one region is “executable, writable” and the other region is 
“executable, not writable”, there is a conflict. Free regions never conflict, since 
they can take on any attributes.	

The above function is only used by the next function.	
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CheckAndMergeNewRegion (region)	
The function is called directly after a new region has been created to contain a 
some segment. This function calls RegionsShareAPage to see if this new region 
shares pages with any other nearby regions and RegionsInConflict to check if 
are conflicts. If there is a conflict, then it prints an error unconditionally. Then 
this function calls MergeWithNeighbors.	

This function calls a helper function named FixedSegmentAttributeConflict to 
print an error.	

FixedSegmentAttributeConflict (region, region2)	
This function unconditionally prints “***** ERROR: These segments have 
different (executable, writable) attributes but try to occupy the same page. *****”. 
It also prints additional information to augment the error message.	

SegmentSharesPageWithRegion (segment, region) —> bool	
This function is passed a segment and a region. If this segment has any pages in 
common with the memory area in the region, this function returns true.	

SegmentStatusConflictWithRegion (segment, region) —> bool	
This function is passed a segment and a region. Presumably they share a page, 
but this is not checked. Instead, it returns true iff they have (Executable/
Writable) attributes that are in conflict.	

ThereIsAnAttributeConflict (segment, freeRegion)  —>  bool	
This function is passed a segment and a free region into which we are considering 
placing the segment. This function looks at the regions that precede the free 
region and the regions that follow the free region. It determines whether this 
segment shares a page with any allocated regions that have different (executable, 
writable) attributes. For user programs, every page will must have a unique set of 
attributes, so this is not acceptable placement of this segment.	

If we are linking a kernel program, we don’t care about conflicts and this function 
returns immediately. Otherwise, it begins by examining all regions that follow the 
free region, until it comes to a region that does not share a page with the segment. 
Then it examines all regions that precede the free region, again halting when it 
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comes to a region that does not share a page with the segment. This function calls 
SegmentSharesPageWithRegion and SegmentStatusConflictWithRegion to get 
the job done.	

FindFreeRegionForFixedSegment (segment) —> region	
This function goes through the region list looking for the free region in which this 
fixed segment is to be placed. If none can be found, an error message is printed.	

The above function can print the following errors, all of which are “fatal” and will 
immediately terminate the linker:	

•	The starting address of first segment overlaps some other fixed segment	
•	 The ending address of first segment overlaps some other fixed segment or 
some unusable memory region	
•	 The starting address of this segment is not within 0x0_0000_0000 ... 
0x7_FFFF_FFFF, yet command option -k requires this	
•	 The starting address of this segment is not within 0x8_0000_0000 ... 
0xF_FFFF_FFFF. (For kernel code, use the -k option)	

ComputeRegionStatus (segment)  —> regionStatus	
A little helper function that returns the region status code number for this 
segment:	
	 4	 Not Executable, Not Writable	
	 5	 Not Executable, Writable	
	 6	 Executable, Not Writable	
	 7	 Executable, Writable	

IsLegalAddress (integer)  —> bool	
A little helper function that tests whether this integer is a legal address. By legal, 
we mean that it is any value within	
	 0_0000_0000 … 7_FFFF_FFFF	 	 if -k was used	
	 8_0000_0000 … F_FFFF_FFFF	 	 otherwise	

PlaceSegment (segment, newAddress) —> size	
This function is passed a segment and the address where this segment is to be 
placed in memory. This function assumes that the patches have already been 
adjusted and it will not modify the sizes of the patches (except ALIGN patches).	
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This function will compute the size of this segment. It will also examine all the 
labels in the segment and (knowing where the segment is getting placed), it will 
set their values. This function will also determine the address that each patch for 
this segment is supposed to modify and will set that.	

Now that we have addresses for the bytes within a segment, we can determine 
how many bytes to insert for an ALIGN patch. This function will determine the 
sizes of the ALIGN patches.	

Given: An address (where to put the segment)	
Returns: The new segment size in bytes	

This function will take the patches, with their sizes as currently configured. It will 
not adjust patch sizes (other than from ALIGN patches).	

For the segment...	
     Set currentAddr and currentLength.	
For every ALIGN patch...	
     Set currentOffsetToPatch.	
     Determine what size is needed & set sizeIncrement.	
For all other patches...	
     Use the current value of sizeIncrement.	
     Set currentOffsetToPatch.	
For every LABEL...	
     Set its currentValue to an absolute address.	

This function will go through the segment from top to bottom. It will only look at 
the segment’s labels and patches, not the actual data.	

The above function uses a fairly complex algorithm. Associated with each segment 
are two lists: patchList and labelList. These have previously been sorted. The 
function starts at the beginning go the segment and goes through it linearly. It 
doesn’t actually look at the data bytes; these won’t even be read in from the file until 
later when we are building the output file.	

As this function goes through the segment, it is inserting bytes. Or, more precisely, it 
is figuring out how many bytes need to be inserted and computing how that shifts 
everything down in memory and makes the segment larger.	
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The main loop goes through the label list and the patch list simultaneously. For each 
iteration, it takes whatever comes next in the file. This is either a label or a patch.	

The loop is keeping track of how many bytes have been inserted so far. When a label 
is encountered, it can use this information (bytesAdded) to determine the actual 
value of the label.	

When it encounters an ALIGN patch, it can determine the current address and 
determine how many bytes to insert to give the proper alignment. And it also 
increments bytesAdded accordingly.	

When it encounters any other kind of patch, it looks at the patch (in particular at the 
patch’s sizeIncrement field) to determine how many bytes this patch has grown 
beyond what was originally in the segment. Again, it will increment bytesAdded 
accordingly.	

Also, for all kinds of patches, it will make a note of exactly where in the segment this 
patch is now located, by setting the patch’s currentOffsetToPatch field.	

This function is “idempotent”, which means that it can be called repeatedly with no 
adverse effects. If you don’t like where the segment was placed, you can call this 
function again to put it somewhere else. As the main algorithm iterates, the 
segments will be moved around to different locations.	

PlaceOneFloatingSegment (segment) —> freeRegion	
This function is passed a segment. It finds a location where this segment can be 
legally placed. It searches the region list and looks at all free regions. This 
function returns the free region that contains the segment’s starting address.	

This function does not modify the Region data structure. However, this function 
calls PlaceSegment to place the segment at some address, which will modify the 
segment and set segment->currentAddr.	

If no location can be found to place this segment, this function causes a 
FatalError, which will abort the linker.	
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Since a floating segment can be placed anywhere and since memory is quite large, it 
is hard to envision a scenario where this function fails to find a place to put this 
segment. So the likelihood of getting this error message is small.	

PlaceFloatingSegments (segmentList)	
This function is passed a list of segments. It will go through the list and, for each 
segment, it will locate a place in memory where this segment can be placed. It 
will place the segment there and modify the region data structure.	

This function runs though all the segments in the list. Some segments may have 
already been placed. For example, all fixed segments will have been placed 
previously. Also some segments may have size zero; these segments will not go 
into memory and we just ignore them.	
 	
For each segment, this function calls PlaceOneFloatingSegment to find a 
location for the segment. Then it calls CreateNewRegion to put the segment into 
a new region. Finally it calls CheckAndMergeNewRegion to merge the region 
with its neighbors. The function CheckAndMergeNewRegion will see if there 
are conflicts with nearby allocated regions, but this should never occur, since 
PlaceOneFloatingSegment will only find legal places to put a floating segment.	

PlaceAllSegments ()	
This function is called to assign a memory address to every segment and build 
the Region data structure, which will reflect how memory is used.	

For each segment, this function will set the segment’s…	
	 currentAddr	
	 currentLength	

For every ALIGN patch, this function will…	
     Set currentOffsetToPatch.	
     Determine what size is needed and set sizeIncrement.	

For all other patches, it will…	
     Use the current value of sizeIncrement.	
     Set currentOffsetToPatch.	

For every LABEL, it will…	
     Set its currentValue to an absolute address.	
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The above function will take the patches as they are currently configured. In other 
words, it will not evaluate the patches, modify them, or see if they are workable. 
After all, we can only compute or check the patches after the segments have been 
placed in memory, since we can’t assign values to labels until after the segment 
placements have been made. We’ll look at the patches later on.	

The algorithm used to place the segments in memory is this:	
• First, place all fixed segments at their locations.	
• Then try to fill in gaps keeping segments with similar attributes together.	
• Finally, place any remaining segments wherever we possibly can.	

The PlaceAllSegments function begins by calling MemoryReset to allocate and 
initialize the Region data structure. Next, it marks all segments as “unplaced”.	

Then for each fixed segment, it calls…	
	 PlaceSegment	
	 FindFreeRegionForFixedSegment	
	 CreateNewRegion	
	 CheckAndMergeNewRegion	
 	
Next, PlaceAllSegments will look at each free region and try to fill it with floating 
segments that have the same (executable/writable) attributes as the previous 
region.	

Previously, we have created separate lists. The lists are called:	

segmentList0	 All fixed segments	
segmentList4	 Floating segments that are not Executable & not Writable 	
segmentList5	 Floating segments that are not Executable & Writable	
segmentList6	 Floating segments that are Executable & not Writable	
segmentList7	 Floating segments that are Executable & Writable	

For example, imagine we have an “executable/not-writable” fixed segment followed 
by a free region. If there are other segments that are also “executable/not-writable”, 
we’d like to place them in this free region. Perhaps by packing all the “executable/
not-writable” segments close together, we can reduce the number of pages that must 
be marked “executable/not-writable”.	
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In this step, the function searches for any free region preceded by an allocated 
region. For example, assume it finds a free region preceded by an “executable/not-
writable” region. It chooses the correct segment list, e.g., segmentList6.	

Then we run though that list, attempting to place those segments into this free 
region. To do that, this function calls a function named 
TryToPlaceTheseSegmentsAfterThisRegion.	

Finally, we simply place the remaining floating segments anywhere we can fit them.	

Do this this, PlaceAllSegments will call PlaceFloatingSegments four times, once for 
each list of floating segments. We will process the lists in this order:	

segmentList5	 Floating segments that are not Executable & Writable	
segmentList4	 Floating segments that are not Executable & not Writable 	
segmentList6	 Floating segments that are Executable & not Writable	
segmentList7	 Floating segments that are Executable & Writable	

The idea is that we are guessing that the segments that contain variables will be 
marked not executable and writable. We want this to go in low memory (0x0 for 
kernel or 0x8,0000,0000 for user programs, so that gp-relative addressing will work 
well. Then we follow it segments that are not executable and not writable; which we 
assume is read-only data; again we expect placement in low memory will tend to 
facilitate gp-relative addressing. Then we follow it with code, which is executable 
and not writable.	

TryToPlaceTheseSegmentsAfterThisRegion (segmentList, region)	
This function is passed a list of segments, all of which have the same attributes 
(executable, writable). It is also passed a region, which is followed by a free 
region.	

We run through the segment list looking at each unplaced segment in turn. We 
attempt to place each such segment at the beginning of the free space.	

The function TryToPlaceTheseSegmentsAfterThisRegion is passed a list of 
floating segments, all of whose attributes match the attributes of the region. The 
region is followed by a free region, at least when it is called.	
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The function runs through the list of segments and tries to pack them into the free 
region. The segments are sorted from largest to smallest, so it attempts to fill the 
free region with the largest first, followed by smaller segments.	

Some segments may already have been placed; these are ignored. Otherwise, we call 
PlaceSegment to update the segment as if it has been placed. This will determine 
the segment’s size. Then we check to see if it will actually fit in the space available. 
We also have to make sure that placing this segment here will not cause a conflict 
due to a shared page with a subsequent region. This is done by calling 
ThereIsAnAttributeConflict.	

If everything looks good, this function creates a new region and places the segment 
into it, by calling CreateNewRegion. Then it calls MergeWithNeighbors to merge 
this region with the original region. It is also possible that the newly created region 
completely eliminated the free region and we can merge the new region with the 
following region.	

On the other hand (if the free region was not large enough or there were attributes 
conflicts), the segment is not placed and we move on to the next segment (toward 
smaller segments) to see if it will fit.	

Once all the segments have been placed in memory, every LABEL symbol will have 
been assigned an address. Now we can compute the value of all EQUATE symbols. 
Symbols of type EQUATE were defined with an .equ pseudo-op.	

We no longer care about symbols of type IMPORT, since all references to a symbol 
defined with a .import pseudo-op have been replaced by references to an exported 
symbol, which necessarily must have been defined either as a LABEL or EQUATE 
symbol.	

ResolveEquates ()	
This function runs through all symbols and, for every symbol of type EQUATE, 
computes and fills in its “currentValue” field.	

This function uses a marking algorithm, utilizing the “markFlag” field in symbols.	
	 0 = “not done yet”	
	 1 = “in progress”	
	 2 = “done” (currentValue has been determined)	
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First, the ResolveEquates function runs through all symbols and marks all EQUATE 
symbols as “not done yet”. It marks all LABELS and IMPORT symbols as “done”.	

Then it runs through all symbols again, and for each EQUATE symbol, calls function 
ResolveOneEquate.	

ResolveOneEquate (symbol)	
This is a recursive algorithm that computes the value of the given symbol.	

The ResolveOneEquate function returns immediately if the symbol is marked as 
“done”. If the symbol is already marked as “in progress”, we have detected a cyclic 
definition, so we print an error and return.	

If the symbol is an absolute value, then we can immediate set its value. We mark it 
“done” and return.	

Otherwise, this symbol is defined as relative to some other symbol. We should take 
the value of the other symbol and add the given offset to it.	

In order to get the value of the other symbol, we will call ourself recursively. So we 
set the markFlag to “in progress” and recursively call ResolveOneEquate on the 
relative-to symbol.	

Upon return, we change the markFlag to “done”, retrieve the value of the relative-to 
symbol, add the offset to it to determine this symbol’s new currentValue, and 
return.	

The Main Linker Algorithm	

Now we have all the functions we need — the functions previously described. We 
are ready to give the algorithm.	
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REPEAT until no more failures	
	 Place all fixed segments.	
	 Place all floating segments.	
	 	 (Placing segments will set "currentValue" for all labels)	
	 Resolve all equates.	
	 	 Recursive Algorithm: Set a flag to check for cycles.	
	 	 	 Initialize the flag to 0.	
	 	 	 0 = not done yet; 1=in progress; 2=final value determined	
	 Check all patches.	
	 	 Determine what machine code the patch translates to.	
	 	 If any patch is too big to fit its allocated space	
	 	 	 Increase the "sizeIncrement" of the patch	
	 	 	 FAILED = true	
END REPEAT	

The placement of all fixed and floating segments is done within function 
PlaceAllSegments. Equates are resolved within function ResolveEquates. And the 
patches are checked within function CheckAllPatches.	

So the above algorithm looks more-or-less like this in the code:	

failureOccurred = 1;
while (failureOccurred) {

failureOccurred = 0;
PlaceAllSegments ();
ResolveEquates ();
CheckAllPatches ();

}

In order to understand this, think about the patches within segments. Each patch 
has an initial size. If, during the algorithm, that size is determined to be too small for 
the machine instructions that must be used, the patch size will be increased. This 
will constitute a “failure”.	

The placement of segments is done without modifying the patch sizes, with one 
exception exception: the ALIGN patches. The ALIGN patches are processed at the 
time a segment in placed at a specific address. (We can only perform the alignment 
after we know the actual addresses.)	

Placing the segments has the side-effect of assigning an address to each label.	
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After the segments have been placed and the labels have been assigned addresses, 
we can process all the equates.	

Once we have processed the equates, we have values of all symbols and we know 
where the patches are in memory.	

Then, we can run through the patches. Each patch has a certain number of bytes 
allocated to it. The function CheckAllPatches makes sure that the machine 
instructions for each patch will fit into the bytes we have reserved for it. If there is a 
problem (i.e., the machine code for a synthetic instruction will not fit into the space 
we have reserved for the patch), then CheckAllPatches will determine how many 
bytes are needed to increase the reservation.	

If CheckAllPatches ever determines that some patch would not fit into the space 
reserved for it, it will set the global variable failureOccurred and the algorithm will 
loop.	

The size of a patch is given by two fields in the Patch object: initialSize and 
sizeIncrement. CheckAllPatches may increase the sizeIncrement and, if so, it will 
set failureOccurred.	

If, however, there is adequate room reserved for every patch, then CheckAllPatches 
will complete and the repeat loop will terminate.	

CheckAllPatches ()	
This function runs through all the patches and makes sure that there is adequate 
room in the segment for the patch.	

If we encounter a patch that will not fit in the allotted space, we set 
failureOccurred to TRUE and we increase patch->sizeIncrement to indicate 
how many bytes are required.	

For registers, we are using dummy values. The actual synthesized instructions 
are ignored.	

The function CheckAllPatches simply runs through the global list of patches and, 
for each, calls ProcessOnePatch. Patches of type ALIGN are ignored, since they are 
processed in function PlaceSegment.	
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ProcessOnePatch (patch, finalRun)	
This function will process a single patch, creating the translation of a synthetic 
instruction. It will place the resulting machine code translation into these 
variables:	

	 word1 — 1st instruction word	
	 word2 — 2nd instruction word	
	 word3 — 3rd instruction word	
	 word4 — 4th instruction word	

It will use as many of these as necessary, placing NOPs in the remaining words.	

This function assumes that word1 will initially contain the registers to use in 
fields Reg1, Reg2, Reg3, and RegD.	

During the main algorithm, the registers in word1 will be zero and don’t matter. 
During the final run when we are actually putting the bytes into the segment 
data, the registers in word1 will be valid.	

This function will modify patch->sizeIncrement, increasing it as necessary.	

The number of bytes actually used is initialSize + sizeIncrement.	

If sizeIncrement was increased, this function will set failureOccurred to TRUE. 
Otherwise, failureOccurred will not be modified.	

If finalRun is true, this function will assume that sizeIncrement was correct and 
will produce a ProgramLogicError if not.	

Errors may be detected. They will be ignored, unless finalRun is TRUE, in which 
case they will be printed. The only user error detected is “offset out of range” for 
the LOADx-offset and STOREx-offset instructions.	

The function ProcessOnePatch is lengthy.	

We should make one note. Normally, the translation of a synthetic instruction does 
not depend on the values of Reg1, Reg2, Reg3, or RegD. There is one exception, 
namely the MOVI instruction. If the destination register in gp (r13) then the 
synthetic instruction may be translated differently.	
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To deal with this, there are actually two patch types for MOVI:	

patchType == 1: 	 MOVI (RegD ≠ gp)	
patchType == 25: 	 MOVI (RegD = gp)	

For this reason, this function needs to know what is in the file. So, in this case, the 
function will read a word from the file at the site of the patch to get the register 
values to see if the destination register is, in fact, gp (r13).	

Finalization	

After the loop terminates, we call function PerformRegionRounding. This function 
only has any effect if we are linking a user program.	

The executable will be organized into pages. The function 
PerformRegionRounding will enlarge each region to become an integral multiple 
of pages. It does this by creating some “dummy” zero-filled segments which it adds 
to regions as necessary.	

PerformRegionRounding ()	
This function is called after all segments have been placed and the regions have 
been created. It rounds all regions to be an even multiple of pages and makes 
sure each region starts on a page boundary. It does this by taking bytes out of the 
free regions before and after a region.	

This function will also creates dummy "zero-filled" segments whenever the bytes 
in a page are not filled with a real segment. In other words, when bytes are move 
from a free region to an allocated region, a new zero-filled segment will be 
created and added to the allocated region. Later, when we are writing the 
allocated regions out to the executable file, these new zero-filled regions will be 
included, making sure that all bytes in the regions are either initialized with bytes 
or zero-filled.	

When linking a kernel program, this function does nothing.	
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CreateZerofilledSegment (region, startAddr, lengthInBytes)	
This function creates a dummy segment that is zero-filled and adds it to the given 
region.	

Such a segment is required when the linker places two or more segments in a 
single page but when there is a gap between them. These bytes must be zero-ed 
at load time. There is also a dummy module that will be created. This module will 
contain all the dummy segments.	

The module will NOT be placed on the module list, so it will not print out. 
However, if errors occur, the module will be needed for printing.	

The newly created dummy segment will be placed on the global segment list, but 
will not be placed on any of the segment sublists. The new segment will be placed 
on the region's segment list.	

The program also checks to make sure there is a symbol named “_entry”.	

Finally, the program writes out the executable file. Given the data structures we have 
built up to this point, this part is straightforward.	

Finally, we print out the data structures (by invoking DumpAllDataStructures) if 
the -s command line option was specified, then print counts of error messages and 
warnings and terminate.	
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Acronym List	
CSR	 Control and Status Register	
EOL	 End of line	
ISA	 Instruction Set Architecture (the core design)	
KPL	 Kernel Programming Language	
LC	 Location Counter	
LSB	 Least Significant Bit / Byte	
MSB	 Most Significant Bit / Byte	
PC	 Program Counter	
UTF-8	 An encoding for Unicode (Unicode Transformation Format)	
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